К началу 70-х гг. накопилось много новых фактов, на основании которых С. Дж. Сингер и Г. Л. Николсон предложили в 1972 г. новую жидко-мозаичную модель строения биологической мембраны, являющуюся в настоящее время общепризнанной.
Согласно этой модели основой мембраны является липидный бислой (двойной слой), в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки — наружу. Липиды представлены фосфолипидами — производными глицерина или сфингозина. С липидным слоем связаны белки: они могут примыкать к липидному слою, погружаться в него или же пронизывать насквозь. Интегральные (трансмембранные) белки пронизывают мембрану насквозь и прочно с ней связаны; периферические белки не пронизывают мембрану и связаны с ней менее прочно. Функции мембранных белков различны:
- поддержание структуры мембран,
- получение и преобразование сигналов из окружающей среды,
- транспорт некоторых веществ,
- катализ реакций, происходящих на мембранах.
Толщина мембраны составляет от 6 до 10 нм.
1 — белковая пора, 2 — полупогруженные молекулы белков, 3 — бимолекулярный слой липидов, 4 — гликокаликс (гликопротеидный комплекс — указатель типа клеток)
Бислой является жидкой структурой, в которой образующие его липиды способны осуществлять сегментальную подвижность, вращательные движения и латеральную диффузию. С меньшей скоростью они способны к переходу на другую сторону бислоя и к выходу из него.
Белки в бислое также лабильны. Время вращательной диффузии для белка в бислое может составлять, меньше 1 мкс. Латеральная подвижность белка определяется не только его собственными свойствами, но и микровязкостью липидного окружения, его упаковкой - фазовым состоянием липидов. Таким образом, подвижность белковых молекул и их ассоциация в мембране контролируются липидами. Аннулярные липиды выявляются в виде слоя, окружающего белковые молекулы, с временем жизни, соответствующей 10-5-10-8с. Ограничение подвижности молекул аннулярных липидов может иметь определенное значение. Время обмена молекулами между аннулярным слоем и суммарным липидным фондом зависит также от структурированности мембраны, а значит, от температуры, жирнокислотного состава ее компонентов, характера взаимодействия молекул липидов друг с другом. Липиды способны образовывать определенные упорядоченные структуры с общей «системой координат» - кластеры, в которых плотность упаковки может существенно отличаться от соседних с ними частей. Время жизни кластеров составляет порядка нескольких мкс., количество молекул в кластере - от десяток до нескольких сотен, а межкластеровые зоны могут образовывать зоны дефектов, облегченных проникновением в бислой модификаторов.
Важной особенностью мембраны является ее ассиметрия, создаваемая за счет действия внутриклеточных ферментов, различий ионного состава цитоплазмы и интерстициальной жидкости, а также особеннстей структуры молекул фосфолипидов и асимметричной локализации белков в бислое. Асимметрия бислоя - это фактор, обеспечивающий создание градиента кривизны, складок, сморщиваний, отшнуровки частей мембраны в виде везикул, что существенно для обеспечения межклеточных взаимодействий.
Свойства мембраны:
- Текучесть. Мембрана не представляет собой жесткую структуру — большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембраны.
- Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторную функции, а также имеющий значение для объединения клеток в ткани).
- Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя — отрицательный.
- Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ. (Использование по отношению к мембранам клеток термина «полупроницаемость» не совсем корректно, так как это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)