Ядерный магнитный резонанс (ЯМР) избирательное поглощение веществом электромагнитного излучения, обусловленное переориентацией магнитных моментов атомных ядер, находящихся в постоянном магнитном поле. На явлении ЯМР основан метод изучения структуры и молекулярного движения в различных веществах, в том числе в биологических объектах.
Ядра атомов большинства химических элементов (за исключением ядер с четным числом протонов и нейтронов) обладают так называемым спином, т.е. моментом количества движения и обусловленным им постоянным магнитным моментом. При помещении в постоянное магнитное поле магнитный момент системы ядер, подобно вращающемуся волчку, выведенному из вертикального положения, движется по поверхности конуса вращения вокруг оси направления поля (прецессионное движение). Воздействие внешнего переменного электромагнитного излучения с данной частотой на ядра, находящиеся в постоянном магнитном поле, приводит к избирательному (резонансному) поглощению энергии электромагнитного излучения и появлению сигнала ЯМР. Разным ядрам соответствуют различные частоты резонанса. Для изучения биологических систем обычно используют ЯМР ядер водорода — протонов (протонный магнитный резонанс) и дейтерия углерода, и др.
Применение ЯМР для структурных исследований основано на том, что помимо внешнего магнитного поля на ядро в веществе действуют различные внутренние поля. Они приводят к сдвигу частоты резонанса, расщеплению на несколько или множество резонансных линий, т.е. к образованию спектра ЯМР, к изменению формы линий, времени релаксации. Изучение спектров ЯМР позволяет сделать вывод о химической и пространственной структуре различных веществ без проведения химического анализа.
В медико-биологических исследованиях метод ЯМР используют для установления структуры биологически активных веществ и изучения механизмов их действия. Важной особенностью метода, особенно для биологии и медицины, является низкая энергия используемых в ЯМР излучений, что существенно снижает их вредное воздействие на организм.
Картину пространственного распределения отдельных видов молекул в организме получают методом ЯМР-интроскопии (ЯМР-томографии). В его основе лежит создание с помощью последовательно приложенных градиентов магнитного поля по различным направлениям такого распределения магнитного поля, чтобы в данный момент различным элементам объема в пределах изучаемого сечения соответствовали свои, определенные для их местоположения частоты резонанса. Изменение градиентов во времени и обработка результатов измерений с помощью ЭВМ позволяют получить пространственную картину распределения молекул, содержащих, например, атомы водорода или фосфора (при наблюдении магнитного резонанса от протонов или ядер фосфора) в пределах изучаемого сечения.
При регистрации ЯМР-изображения амплитуда резонанса в каждом элементе объема может быть выражена через интенсивность освещения или в цветовой шкале. Достоинством метода ЯМР-интроскопии является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность.
Электронный парамагнитный резонанс ЭПР иначе электронный спиновый резонанс (англ.electron spin resonance) — резонансное поглощение излучения микроволновой частоты атомами, молекулами, ионами, кластерами, обладающими ненулевым электронным спиновым магнитным моментом.
Явление резонансного поглощения электромагнитного излучения парамагнитными частицами, помещенными в постоянное магнитное поле, нашло применение в методе спектроскопии ЭПР, который позволяет выявлять парамагнитные частицы и описывать их взаимодействие с соседними атомами, молекулами и т. д.
В постоянном магнитном поле происходит расщепление уровня энергии (эффект Зеемана). Энергетическая величина расщепления и, соответственно, резонансная частота определяются электронным окружением и характером внутри- и межмолекулярного взаимодействия. ЭПР используется для изучения систем с ненулевым электронным спиновым магнитным моментом, т. е. обладающих одним или несколькими неспаренными электронами (парамагнитных частиц). Парамагнитными частицами могут быть атомы и молекулы (например, атомы азота и водорода, молекулы NO), свободные радикалы (CH3), точечные дефекты в твердых телах, ионы переходных металлов (в том числе, входящих в состав кластерных соединений). Так, например, методом ЭПР была описана структура эндоэдральных фулеренов, многие из которых являются радикалами.