Фотохимия, отрасль химии, занимающаяся изучением взаимодействий света с веществом. Эти взаимодействия могут сопровождаться химическими превращениями вещества, иногда с испусканием света. Предметом изучения фотохимии служат и некоторые физические процессы, инициируемые видимым светом (диапазон волн 400–700 нм) или ультрафиолетовым излучением (200–400 нм).

Кислород поглощает излучение, начиная с 200 нм, поэтому исследования в коротковолновой области спектра можно проводить только в условиях вакуума. Очень интересные изменения происходят в веществе под действием т.н. «вакуумного ультрафиолета» – излучения, простирающегося до области электромагнитного спектра, занятого рентгеновским излучением с длиной волны несколько нанометров. 

Большинство фотохимических процессов начинается с того, что вещество поглощает свет. Это приводит к переходу электронов его атомов или молекул на более высокий энергетический уровень – иначе говоря, к переходу их в возбужденное состояние. Такие атомы и молекулы ведут себя по-другому, чем, когда они находятся в основном состоянии, и процессы, в которых они могут принимать участие, отличаются от обычных «тепловых» химических реакций. Согласно закону Планка, энергия фотона (кванта) излучения Е связана с длиной волны L соотношением:

 E = hc/L, где h – постоянная Планка, с – скорость света.

При поглощении кванта видимого света энергия возбужденной молекулы становится сравнимой с энергией химических связей, поэтому молекула может претерпеть химическое превращение – либо сама по себе, либо в результате взаимодействия с другой молекулой. Анализ химических превращений, сопровождающих электронное возбуждение, приводит к двум основным законам фотохимии.

Первый из них, сформулированный Т.Гротгусом и Дж.Дрейпером, состоит в том, что фотохимическую реакцию может инициировать только поглощенный свет.

Второй закон, закон фотоэквивалентности Штарка – Эйнштейна, утверждает, что каждый поглощенный фотон возбуждает одну и только одну молекулу.

Поглощение света может вызывать различные химические превращения:

1.Наиболее типичная фотохимическая реакция в газовой фазе – диссоциация молекул с образованием атомов и радикалов. Так, при действии коротковолнового ультрафиолетового (УФ) излучения, которому подвергается, например, кислород, образующиеся возбуждённые молекулы O2* диссоциируют на атомы:

Эти атомы вступают во вторичную реакцию с O2, образуя озон: O + O2 = O3.

Такие процессы происходят, например, в верхних слоях атмосферы под действием излучения Солнца

2.Диссоциация. Если молекула приобретает достаточно большое количество энергии, то может произойти разрыв какой-либо химической связи с образованием двух молекулярных осколков. Очень часто эти осколки являются химически активными атомами или свободными радикалами. Типичным примером такого процесса может служить разложение воды Н2О с образованием атома водорода Н и гидроксильного радикала ОН. Для этого нужен свет с длиной волны менее 242 нм. Фотодиссоциацию вещества часто называют фотолизом.

3.Изомеризация. Иногда в электронно-возбужденной молекуле происходит перегруппировка атомов. Возможно, это связано с тем, что подвижность функциональных групп молекулы, находящейся в основном состоянии, ограниченна, а при переходе ее в возбужденное состояние ограничения снимаются.

4.Фотоионизация. При наличии достаточной энергии возбужденная молекула распадается с высвобождением электрона и образованием положительно заряженного иона, а не двух.

В результате фотохимических процессов изменяется состав атмосферы планет. Особенно это касается атмосферы Земли, поскольку она представляет собой, наряду с азотом и другими инертными газами, неравновесную смесь кислорода и окисляемых соединений, таких, как водород Н2, метан СН4, монооксид углерода СО, сероводород Н2S. Неравновесность отчасти поддерживается биологическими процессами, но основным фактором является солнечная радиация, инициирующая различные фотохимические реакции. В результате фотохимической диссоциации молекулярного кислорода О2 на атомы с последующим их присоединением к О2 в атмосфере на высоте от 20 до 40 км образуется слой озона О3. Озоновый слой поглощает значительную часть ультрафиолетового излучения Солнца и защищает живые организмы на Земле от его губительного воздействия. На больших высотах более коротковолновое излучение вызывает фотоионизацию, в результате которой в атмосферу попадают и ионы. Наличие в атмосфере слоя ионизированного газа позволяет осуществлять дальнюю радиосвязь. Животные получают солнечную энергию косвенным путем, поедая растения. Масса всех органических веществ, произведенных зелеными растениями за время их существования, составляет около 1% массы самой планеты, а в процессе фотосинтеза аккумулируется количество энергии, в десять раз превышающее то, которое потребляет все население Земли.

© 2015-2018 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх