Генеральная закономерность воздействия температуры на живые организмы выражается действием ее на скорость обменных процессов. Согласно общему для всех химических реакций правилу Вант-Гоффа, повышение температуры ведет к пропорциональному возрастанию скорости реакции. Разница заключается в том, что в живом организме химические процессы всегда идут с участием сложных ферментных систем, активность которых в свою очередь зависит от температуры. В результате ферментативного катализа возрастает скорость биохимических реакций и количественно меняется ее зависимость от внешней температуры. В одном и том же организме величина температурного ускорения биохимических реакций неодинакова для различных процессов. Эта закономерность нередко определяет пределы температурной устойчивости организма в целом.

Температурные пороги жизни. Объективная зависимость скорости реакций от температуры уже исходно определяет, что жизненные функции могут протекать лишь в определенном интервале температур. Имеется ряд дополнительных обстоятельств, определяющих температурные пороги, выше и ниже которых жизнь невозможна. Видовая специфика ферментных систем приводит к тому, что эти пороги неодинаковы для разных видов живых организмов. 

Верхний температурный порог жизни теоретически определяется температурой свертывания белков. Необратимые нарушения структуры белков обычно возникают при температуре порядка 60°С. Именно таков порог «тепловой смерти» у ряда простейших и некоторых низших многоклеточных организмов. Обезвоживание организма повышает этот порог, а соответственно и термоустойчивость организма. Именно на этом основана высокая термоустойчивость цист, спор, семян, да и некоторых мелких организмов в обезвоженном состоянии. У более сложно организованных растений и животных тепловая гибель обычно наступает при более низких температурах. Основная причина ее — рассогласование обменных процессов. У животных большое значение имеют нарушения деятельности нервной системы и ее регуляторных функций.

Нижний температурный порог жизни. Нарушения метаболических и регуляторных процессов наступают и при очень низких температурах. Дисгармония функции в целом организме определяется, как и при гипертермии, разной величиной коэффициента температурных ускорений отдельных реакций. Например, нарушения деятельности сердца при слабом охлаждении проявляются в ритме сокращений и сократимости сердечной мышцы, а при более сильном — в ее проводимости и возбудимости. При одном и том же снижении температуры удлинение периода диастолы выражено сильнее, чем систолы. Важное значение в определении нижнего температурного порога жизни имеют структурные изменения в клетках и тканях, связанные с замерзанием внеклеточной и внутриклеточной жидкостей. При образовании кристаллов льда механически повреждаются ткани, что часто служит непосредственной причиной Холодовой гибели. Кроме того, образование льда нарушает обменные процессы: обезвоживание цитоплазмы влечет за собой повышение концентрации солей, нарушение осмотического равновесия и денатурацию белков.

Рассмотренные закономерности отражают зависимость обменных реакций от температуры тела. Последняя же в большинстве случаев не идентична температуре среды; она устанавливается в результате баланса тепла между организмом и внешней средой. Постоянно происходящий обмен тепла (теплообмен) организма со средой зависит от рада факторов и в принципе складывается из двух противоположных процессов:

  • притока тепла,
  • отдачи его во внешнюю среду.

Поступление тепла в организм из внешней среды идет путем теплопроводности и радиации; кроме того, в любом живом организме продуцируется эндогенное тепло как результат всех метаболических реакций. Отдача тепла во внешнюю среду осуществляется также проведением и радиацией; кроме того, значительное количество тепла расходуется организмом в процессе жизнедеятельности путем испарения влаги (скрытая теплота испарения при 22°С составляет 2443,5 Дж/г, или 584 кал/г). Баланс этих двух процессов и определяет собой температуру тела, т. е. тепловую среду биохимических и физиологических реакций, протекающих в организме.  Относительная роль перечисленных составляющих теплообмена неодинакова у разных форм живых организмов. По принципиальным особенностям теплообмена различают две крупные экологические группы организмов:

  • пойкилотермные ,
  • гамойотермные.

К пойкилотермным (изменчивый, меняющийся) организмам относят все таксоны органического мира, кроме двух классов позвоночных животных — птиц и млекопитающих. Принципиальная особенность теплообмена пойкилотермных организмов заключается в том, что благодаря относительно низкому уровню метаболизма главным источником поступления тепловой энергии у них является внешнее тепло. Скорость изменений температуры тела пойкилотермов связана обратной зависимостью с их размерами. Это прежде всего определяется соотношением массы и поверхности: у более крупных форм относительная поверхность тела уменьшается, что ведет к уменьшению скорости потери тепла. Изменчивость температуры влечет за собой соответствующие изменения скорости обменных реакций. Поскольку динамика температуры тела пойкилотермных организмов животных определяется изменениями температуры среды, интенсивность метаболизма также оказывается в прямой зависимости от внешней температуры. Скорость потребления кислорода, в частности, при быстрых изменениях температуры следует за этими изменениями, увеличиваясь при повышении ее и уменьшаясь при снижении

© 2015-2018 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

Заказать курсовую

^ Наверх