Непосредственный перенос ионов через липидный бислой только за счет диффузии маловероятен.

Можно предположить, что в мембране должны быть некоторые специальные структуры - проводящие ионы. Такие структуры были найдены и названы ионными каналами. Подобные каналы выделены из различных объектов: плазматической мембраны клеток, постсинаптической мембраны мышечных клеток и других объектов. Известны также ионные каналы, образованные антибиотиками.

Основные свойства ионных каналов:

  • селективность;
  • независимость работы отдельных каналов;
  • дискретный характер проводимости;
  • зависимость параметров каналов от мембранного потенциала.

 Селективностью называют способность ионных каналов избирательно пропускать ионы какого-либо одного типа.

Еще в первых опытах на аксоне кальмара было обнаружено что ионы Na + и К+ по-разному влияют на мембранный потенциал. Ионы К+ меняют потенциал покоя, а ионы Na+ - потенциал действия. В модели Ходжкина-Хаксли это описывается путем введения независимых калиевых и натриевых ионных каналов. Предполагалось, что первые пропускают только ионы К+, а вторые - только ионы Na+.

Измерения показали, что ионные каналы обладают абсолютной селективностью по отношению к катионам (катионселективные каналы) либо к анионам (анион-селективные каналы). В то же время через катионселективные каналы способны проходить различные катионы различных химических элементов, но проводимость мембраны для неосновного иона, а значит, и ток через нее, будет существенно ниже, например, для Na+-кaнала калиевый ток через него будет в 20 раз меньше. Способность ионного канала пропускать различные ионы называется относительной селективностью и характеризуется рядом селективности - соотношением проводимостей канала для разных ионов, взятых при одной концентрации. При этом для основного иона селективность принимают за 1. Например, для Na+-канала этот ряд имеет вид:

Na+:K+= 1:0,05.

Следует отметить, что представления о наличии у биологических мембран ионной селективности сложились задолго до работ А. Ходжкина и А. Хаксли. Избирательная проницаемость клеточной мембраны нервов для К+ и возрастание проницаемости при возбуждении для других ионов предполагались Дж. Бернштейном (1902). В теории пор (теория молекулярного сита) П.Бойля и Е. Конвея (1941) проницаемость мембранных пор для ионов определялась прежде всего гидратационным радиусом ионов. Предполагали, что меньший по размеру гидратированный ион К+ свободнее, чем гидратированный ион Na+, проникает через клеточные мембраны.

Современный взгляд на селективность биомембран основан главным образом на теории ионообменной селективности, созданной Дж. Эйзенманом применительно к ионоселективным стеклянным электродам. Сродство иона к участкам связывания в ионных каналах определяется значением свободной энергии перехода иона из раствора в канал, которое зависит от следующих факторов. Проникновение иона в пору облегчается тем, что возрастание свободной энергии, обусловленное потерей гидратной оболочки (500-700 кДж/моль), компенсируется понижением энергии при взаимодействии с дипольными группами канала. Другим важным фактором, облегчающим проникновение иона в канал, является кулоновское взаимодействие транспортируемого катиона с фиксированным анионным центром в просвете канала. Наличие дипольных групп в канале и фиксированных зарядов приводит к тому, что энергия перехода иона из раствора в канал не превышает ~ 30,5 кДж/моль.

Переход иона из раствора в полость канала можно формально рассматривать как перенос иона из среды с диэлектрической проницаемостью es в среду с диэлектрической проницаемостью ер и последующее приведение иона в контакт с фиксированным отрицательным зарядом. Порядок расположения катионов щелочных металлов в рядах селективности меняется в зависимости от предполагаемого радиуса анионного центра. Для самых больших анионных радиусов энергия кулоновского взаимодействия мала и определяющим фактором является взаимодействие катиона с водой. В этом случае сродство катиона к участкам связывания в мембране возрастает с увеличением ионного радиуса в ряду связывания: Cs > Rb > К > Na > Li.

Для самых малых анионных радиусов, наоборот, преобладает притяжение катиона к фиксированному отрицательному заряду аниона и тогда образуется ряд связывания, в котором катионы меньшего радиуса связываются прочнее, чем крупные: Li > Na > К > Rb > Cs. Существуют другие переходные ряды для промежуточных значений радиуса фиксированного отрицательного заряда.

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный) или через слой клеток (трансцеллюлярный), протекающий против градиента концентрации, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ. Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой.

Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого против градиента концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Первично активный транспорт. Всегда сопряжён с использованием энергии АТФ и транспортирует вещества против градиента концентрации. Транспортеры очень специфичны относительно переносимых частиц и могут регулироваться.

Вторично активный транспорт. Является частным случаем облегчённой диффузии, но при этом транспорт одного вещества против градиента концентрации сопряжён с транспортом другого вещества по градиенту концентрации. Возможны два случая: симпорт и антипорт, в зависимости от направления транспорта.

Везикулярный транспорт. Осуществляется транспорт в замкнутых мембранах. Транспорт обеспечивается слиянием и разделением мембранных везикул, частным случаем являются процессы фагоцитоза и пиноцитоза. Это единственный способ транспорта крупных, состоящих из большого числа молекул, частиц.

© 2015-2019 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

Заказать курсовую скидка 15%

^ Наверх