Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Между движущими силами и скоростями (потоками) существует взаимосвязь, при которой увеличение (уменьшение) движущей силы вызывает соответствующее увеличение (уменьшение) скорости процесса.

Если система находится вблизи равновесия, где величины движущих сил и потоков очень малы, то между ними имеется прямая пропорциональная зависимость:

J = LX, где L - постоянный линейный коэффициент, Х - движущая сила, J - величина поток.

Если в открытой системе вблизи равновесия протекают одновременно несколько процессов, то между ними существуют термодинамические соотношения, отражающие их взаимное влияние. Для двух процессов (J1 , X1) и (J2 , X2) эти соотношения имеют вид

J1 = L11X1 + L12X2 ,

J2 = L21X1 + L22X2 ,

где постоянные коэффициенты L11 , L22 отражают зависимость потока от своей силы, а коэффициенты L12 , L21 соответствуют взаимному влиянию силы одного процесса на поток другого процесса. Они носят название коэффициентов взаимности Онзагера.

Вблизи равновесия L12 = L21 .

Рассмотрим процесс активного переноса вещества через биологическую мембрану, который происходит за счет энергии сопрягающего метаболического процесса и поэтому может идти против градиента концентрации переносимого вещества. Тогда

J1 = L11X1 + L12X2 ,

J2 = L21X1 + L22X2 , L12 = L21 ,

где процесс (J1 , X1) сопряженного переноса идет против градиента силы X1 (J1 , X1 < 0) за счет энергии сопрягающего процесса (J2 , X2 > 0). Если сопряжение отсутствует, то L12 = L21 = 0 и процессы идут независимо друг от друга под действием только своих движущих сил

J1 = L11X1 , J2 = L22X2 .

В начальные моменты запуска системы большая скорость сопрягающего процесса J2 снижается до минимальных значений, одновременно растет величина X1 . В результате этих изменений устанавливается стационарное состояние, когда результирующий сопряженный поток обращается в нуль: J1 = 0. Если система полностью сопряжена, то и для сопрягающего потока устанавливается стационарное состояние J2 = 0. В этом случае в системе нет видимых изменений и вся энергия сопрягающего потока тратится на поддержание силы X1. Так, в митохондриях скорость окисления субстрата, то есть скорость движения (J2), связана с отношением АДФ / АТФ, то есть движущей силой X1 . В состоянии митохондрий, когда концентрация АДФ равна нулю и видимого образования АТФ не происходит (J1 = 0), вся энергия тратится на поддержание максимального уровня . Добавление разобщителей уменьшает величину X1 , но тогда уже J1 не равно 0, что приводит к ускорению сопрягающего потока.

Коэффициент трансформации энергии в сопрягающих процессах равен | J1X1 | / J2X2 и в митохондриях может достигать значений 80-90%. Применение уравнений Онзагера позволяет получить характеристики макромолекулярных комплексов - биологических трансформаторов энергии, не прибегая к детальному анализу механизмов их функционирования.

Теорема Пригожина — теорема термодинамики неравновесных процессов. Согласно этой теореме, стационарному состоянию линейной неравновесной системы (в условиях, препятствующих достижению равновесного состояния) соответствует минимальное производство энтропии. Если таких препятствий нет, то производство энтропии достигает своего абсолютного минимума — нуля. Теорема доказана И. Р. Пригожиным в 1947 из соотношений Онсагера. Теорема Пригожина справедлива, если кинетические коэффициенты в соотношениях Онсагера постоянны (не зависят от движущих сил и потоков); для реальных систем она справедлива лишь приближённо, поэтому минимальность производства энтропии для стационарного состояния не является столь общим принципом, как максимальность энтропии для равновесного состояния. Формулировка теоремы: В стационарном состоянии производство энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальным и постоянным. Если система не находится в стационарном состоянии, то оно будет изменяться до тех пор, пока скорость производства энтропии, или, иначе, диссипативная функция системы не примет наименьшего значения

Принцип Ле-Шателье - внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

Увеличение давления смещает равновесие в сторону реакции, ведущей к уменьшению объема.

Повышение температуры смещает равновесие в сторону эндотермической реакции.

Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещают равновесие в строну прямой реакции.

Катализаторы не влияют на положение равновесия.

По мере удаления от равновесия будут расти величины X и J и система может удалиться от равновесия и покинуть область линейной термодинамики, не теряя общей устойчивости. Возможно, однако, что при удалении от равновесия в системе наступает бифуркационное изменение и возникает неустойчивость. Возникает, как говорят, термодинамическая флуктуация, уводящая систему от неустойчивой точки, что может стать причиной распада системы. Однако при определенных значениях параметров эта флуктуация как бы дает толчок, переводящий систему к новому состоянию, которому и передается устойчивость. Например, появлению предельного цикла, возникновению диссипативных структур в распределенных системах также предшествует нарушение термодинамической устойчивости вдали от равновесия. Наконец, переходы между устойчивыми стационарными состояниями происходят на границе устойчивости, когда система совершает скачкообразный переход между ними.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх