Если мой сайт помог вам в подготовке к экзаменам вы можете отправить ссылку своим друзьям биологам.  Это сделает ресурс лучше!

Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Фотосинтетические пигменты представлены молекулами, способными поглощать кванты света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску - зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов:

  • хлорофиллы,
  • каротиноиды,
  • фикобилины.

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros - зеленоватый, phyllon - лист), который имеется практически у всех фототрофов (фототрофами называются автотрофные организмы, способные к фотосинтезу). Хлорофилл неоднороден, насчитывается свыше десятка зеленых пигментов, отличающихся друг от друга атомными группами, присоединенными к пиррольным структурам порфиринового кольца, а также по некоторым другим характеристикам. Поэтому целесообразно начать с химической характеристики хлорофилла и других фотосинтетических пигментов.

Химически хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина с двумя спиртами - фитолом и метанолом. Пространственная структура молекулы определяет свойства хлорофилла. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединенными между собой метиновыми мостиками, с атомом магния в центре. В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер - пирроленин и продукт неполного восстановления пиррола - пирролин. Поскольку в этих циклических соединениях, помимо атомов углерода, присутствует гетероатом  - азот, они называются гетероциклическими. Наличие двойных связей позволяет отнести их к ненасыщенным гетероциклам. Атомы углерода, расположенные в гетероцикле рядом с гетероатомом - азотом, обозначаются как а-атомы, а удаленные от него - d-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют d-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла - магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) p-электроны, которых в ядре насчитывается 18.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла - гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b (он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли - хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Бактериохлорофиллы отличаются от прочих типов хлорофиллов тем, что способны поглощать красный свет гораздо большей длины, чем хлорофиллы растений. Так, бактериохлорофилл зеленых бактерий утилизирует волны длиной 850 нм, бактериохлорофилл а пурпурных бактерий до 900 нм, а бактериохлорофилл b пурпурных бактерий - до 1100 нм. Это обстоятельство позволяет бактериям, особенно пурпурным, активно расти при наличии лишь не видимых человеческим глазом инфракрасных лучей.

Другую обязательную группу фотосинтетических пигментов образуют каротиноиды (лат. carota - морковь). Эти жирорастворимые пигменты имеют различную окраску - от желтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах и хромопластах) растений. Причем в зеленых частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зеленые пигменты разрушаются, и каротиноиды становятся хорошо заметными, определяя окраску осенних листьев. Кроме растений, каротиноиды синтезируют фототрофные бактерии и грибы.

Каротиноиды в растительном организме выполняют ряд функций, среди которых наиболее очевидными являются следующие: участие в фотосинтезе в качестве дополнительных пигментов антенных комплексов. Они способны поглощать свет, не доступный для других пигментов, и передавать его хлорофиллам. Кроме того, каротиноиды ослабляют фотоокисление хлорофилла в присутствии кислорода.

Третьей группой фотосинтетических пигментов являются фикобилины (греч. phykos - водоросль, лат. bilis - желчь), которые присутствуют у некоторых водорослей (красных) и цианобактерий. Отдельными молекулами фикобилины, как правило, не представлены, а образуют комплексы с белками, с которыми они, в отличие от хлорофиллов, связаны прочными ковалентными связями. Комплексы таких пигментов с белками называются фикоби- липротеидами (хромопротеидами).

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх