Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Любая каталитическая реакция предполагает изменение скоростей как прямой, так и обратной реакции за счет снижения ее энергетики. Если хими­ческая реакция протекает с выделением энергии, то она должна начинаться спонтанно. Однако этого не происходит, потому что компоненты реакции должны быть переведены в активированное (переходное) состояние. Энергия, необходимая для перевода реагирующих молекул в активированное состояние, называется энергией активации.

Переходное состояние характери­зуется непрерывным образованием и разрывом химических связей, причем между переходным и основным состояниями существует термодинамическое равновесие. Скорость прямой реакции зависит от температуры и разности значений свободной энергии для субстрата в переходном и основном состоя­ниях. Эта разность называется свободной энергией реакции.

Достижение переходного состояния субстрата возможно двумя путями:

  • за счет передачи реагирующим молекулам избыточ­ной энергии (например, за счет увеличе­ния температуры),
  • за счет снижения энергии активации соответствующей химической реакции.

Основное и переходное состояния реагирующих веществ.

 Ео, Ек — энергия активации реакции без и в присутствии катализатора; DG —

разность свободной энергии реакции.

Ферменты «помогают» субстратам принять переходное состояние за счет энергии связывания при образовании фермент-субстратного комплекса. Сни­жение энергии активации при фермента­тивном катализе обусловлено увеличе­нием числа стадий химического процес­са. Индуцирование ряда промежуточных реакций приводит к тому, что исходный активационный барьер дробится на несколько более низких барьеров, преодо­леть которые реагирующие молекулы могут гораздо быстрее, чем основной.

Механизм ферментативной реакции можно представить следу­ющим образом:

  1. соединение фермента (Е) и субстрата (S) с образованием не­стойкого фермент-субстратного комплекса (ES): Е + S → E-S;
  2. образование активированного переходного состояния: Е-S → (ES)*;
  3. высвобождение продуктов реакции (Р) и регенерация фермен­та (Е): (ES)* → Р + Е.

Для объяснения высокой эффективности действия энзимов было предложено несколько теорий механизма ферментативного катализа. Наиболее ранней является теория Э. Фишера (теория «шаблона» или «жесткой матрицы»). Согласно этой теории фермент является жест­кой структурой, активный центр которой представляет собой «сле­пок» субстрата. Если субстрат подойдет к активному центру фермен­та как «ключ к замку», то произойдет химическая реакция. Эта тео­рия хорошо объясняет два типа субстратной специфичности фермен­тов — абсолютную и стереоспецифичность, но оказывается несостоя­тельной при объяснении групповой (относительной) специфичности ферментов.

Теория «дыбы» основана на представлениях Г. К. Эйлера, изучав­шего действие гидролитических ферментов. По этой теории фермент связывается с молекулой субстрата в двух точках, при этом происходит растяжение химической связи, перераспределение элек­тронной плотности и разрыв химической связи, сопровождающий­ся присоединением воды. Субстрат до присоединения к ферменту имеет «расслабленную» конфигурацию. После связывания с активным центром молекула субстрата подвергается растяжению и деформации (располагается в активном центре как на дыбе). Чем больше длина химических связей в субстрате, тем легче они разрываются и тем меньше энергия активации химической реакции.

В последнее время нашла широкое распространение теория «ин­дуцированного соответствия» Д. Кошланда, которая допускает высо­кую конформационную лабильность молекулы фермента, гибкость и подвижность активного центра. Субстрат индуцирует конформационные изменения молекулы фермента таким образом, что активный центр принимает необходимую для связывания субстрата простран­ственную ориентацию, т. е. субстрат подходит к активному центру как «рука к перчатке».

Согласно теории индуцированного соответствия механизм взаи­модействия фермента и субстрата следующий:

  1. фермент по принципу комплементарности распознает и «ловит» молекулу субстрата. В этом процессе белковой молекуле помога­ет тепловое движение ее атомов;
  2. аминокислотные остатки активного центра смещаются и под­страиваются по отношению к субстрату;
  3. химические группировки ковалентно присоединяются в активном центре - ковалентный катализ.

© 2015-2019 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

Электронный адрес для связи artemchichkov@gmail.com

^ Наверх