Глюконеогенез. Этот процесс характерен для представителей всех царств живых организмов, но наиболее важное значение имеет для клеток высших животных. Дело в том, что эмбриональные ткани, мозг, семенники, эритроциты в качестве источника углерода способны использовать только D-глюкозу. Если в рационе недостает углеводов, в печени индуцируется распад гликогена, но и этого источника может оказаться недостаточно (мозг человека в сутки потребляет более 120 г глюкозы). В таком случае глюкоза синтезируется в организме из неуглеводных предшественников в ходе глюконеогенеза. Наиболее активно глюконеогенез осуществляется у животных в клетках печени и почек.
Реакции глюконеогенеза в большой степени тождественны обратным реакциям гликолиза, и многие из них катализируются теми же ферментами, которые задействованы в гликолизе.
Итак, в гликолизе имеется три практически необратимые реакции, взамен которых в глюконеогенезе существуют обходные пути.
Первый обходной путь представляет собой превращение пирувата в фосфоенолпируват. Для непосредственного перевода пирувата в фосфоенолпируват недостаточно энергии расщепления АТР, поэтому данная стадия осуществляется в ходе нескольких реакций. Вначале пируват, образующийся преимущественно в цитоплазме (из лактата, аминокислот, в гликолизе), переводится в митохондрии и там карбоксилируется в оксалоацетат.
Катализирует реакцию пируваткарбоксилаза, использующая в качестве кофактора биотин. Оксалоацетат в митохондриях восстанавливается в малат (митохондриальная малатдегидрогеназа), который с помощью специфических переносчиков транспортируется в цитоплазму. В цитоплазме малат вновь окисляется в оксалоацетат (цитоплазматическая малатдегидрогеназа), который с помощью GTP-зависимой фосфоенолпируваткарбоксилазы декарбоксилируется в фосфоенолпируват (РEP).
Второй обходной путь в глюконеогенезе представляет собой превращение фруктозодифосфата во вруктозо-6-фосфат. В гликолизе фосфофруктокиназная реакция, сопровождающаяся гидролизом АТР, является необратимой. В глюконеогенезе функционирует другой фермент—фруктозодифосфатаза, которая катализирует практически необратимое отщепление фосфатной группы от первого атома углерода. Фруктозодифосфатаза, как и пируваткарбоксилаза, является аллостерическим ферментом. Его активность ингибируется с помощью АМР и активируется при участии АТР.
Третий обходной путь — дефосфорилирование глюкозо-6-фосфата, не может произойти с помощью прямого обращения гексокиназной реакции. Эту реакцию катализирует глюкозо-6-фосфатаза, которая локализована на внутренней поверхности мембран гладкого эндоплазматического ретикулума (ЭР). Поэтому для осуществления данной реакции глюкозо-6-фосфат транспортируется в ЭР, где дефосфорилируется в свободную глюкозу. Следует отметить, что глюкозо-6-фосфатаза отсутствует в таких тканях, как мышцы и мозг, поэтому они не могут поставлять в кровь свободную глюкозу.
Суммарное уравнение глюконеогенеза выглядит следующим образом:
Из приведенного баланса следует, что на образование одной молекулы глюкозы в процессе глюконеогенеза расходуется шесть высокоэнергетических фосфатных связей, а также две молекулы NADH. Важно отметить, что регуляция скорости синтеза глюкозы в этом пути осуществляется с помощью ферментов, не принимающих участие в гликолизе. При этом глюконеогенез наиболее интенсивно протекает в условиях повышенного содержания в клетке топливных молекул, в частности ацетил-СоА, и достаточного количества АТР.
Глицерол включается в путь глюконеогенеза через дигидроксиацетонфосфат, в который он превращается после фосфорилирования (с участием АТР) и дегидрирования.
Аминокислоты поступают в путь через такие метаболиты, как пируват и оксалоацетат, образующиеся в ходе перестроек их углеродных скелетов. Лактат перед вступлением в глюконеогенез должен окислиться до пирувата.