Растения различаются по способности выносить повышенные температуры. Большинство растений начинают страдать при температуре 35—40°С. Лучше пе­реносят повышенную температуру обезвоженные органы: семена до 120°С, пыль­ца до 70°С. Однако есть высшие растения, главным образом растения пустынь (например, суккуленты), которые переносят повышение температуры до 60°С. Некоторые водоросли, грибы и бактерии могут переносить еще более высокую температуру. Наиболее термофильными являются микроорганизмы (бактерии, некоторые водоросли), обитающие в горячих источниках и в кратерах вулканов, которые способны переносить повышение температуры до 100°С.

Температура транспирирующих листьев ниже температуры воздуха. Обычно растения снижают температуру с помощью транспирации и таким образом из­бегают перегрева. Водный дефицит, который возникает при недостатке воды, увеличивает неблагоприятное действие повышенных температур. Высокая температура оказывает губительное влияние на организмы, что вызывает по­вреждения мембран и белков. Различные белки-ферменты денатурируют при различной температуре. Однако даже частичная денатурация некоторых наибо­лее термолабильных ферментов приводит к нарушению согласованности про­цессов обмена. Накапливаются растворимые азотистые соединения и другие ядо­витые промежуточные продукты обмена, в результате чего происходит гибель клеток.

Непосредственной реакцией на температурное воздействие является изменение текучести мембран. Под влиянием высокой температуры в мембранах увеличивается количество ненасыщенных фосфолипидов. В результате состав и структура мембраны изменяются и, как следствие, происходит увеличение проницаемости мембран и выделение из клетки водорастворимых веществ. Повышенная текучесть мембранных липидов при высокой температуре может сопровождаться:

  • потерей активности связанных с мембранами ферментов,
  • нарушением работы переносчиков электронов.

От состояния липидов в тилакоидах хлоропластов в значительной степени зависят фотохимические реакции и фотофосфорилирование. Высокая температура тормозит как фотосинтез, так и дыхание. Уменьша­ется сопряженность энергетических процессов. Особенно чувствителен к повы­шенной температуре фотосинтез. Депрессия этого процесса обычно начинается уже при 35—40°С. Необходимо заметить, что при повышенных температурах уменьшается активность фитогормонов. Резко падает активность гибберелли­нов, что является одной из причин торможения ростовых процессов.

Организмы в зависимости от их температурного оптимума можно разделить на:

  • термофильные (выше 50°С), 
  • теплолюбивые (25-50°С), 
  • умеренно теплолюбивые (15-25°С),
  • холодолюбивые (5-15°С).

 Среди высших растений термофильных организмов нет.

Устойчивость растений к высоким температурам называют жароустойчивостью, или термотолерантностью. Повышенная температура особенно опасна для растений при сильной освещенности. Существует определенная связь между условиями жизни растений и их жароустойчивостью. Чем суше местообитание и чем выше температура воздуха, тем больше жароустойчивость организма.

По жароустойчивости растения можно разделить на 3 группы:

1) жаростойкие – главным образом низшие растения, например, термофильные бактерии и сине-зеленые водоросли. Эта группа организмов способна выдерживать повышение температуры до 75-90°С;

2) жаровыносливые – растения сухих мест обитания: суккуленты (выдерживают повышение температуры до 60°С) и ксерофиты (до 54°С);

3)  нежаростойкие – мезофиты и водные растения. Мезофиты солнечных мест обитания могут переносить +40-47°С, затененных – приблизительно +40-42°С; водные растения, кроме сине-зеленых водорослей, выдерживают повышение температуры до 38-42°С.

Адаптация растений к высоким температурам. В процессе эволюции формировались и закреплялись различные механизмы адаптации, делающие растение более устойчивым к высоким температурам. Выработка таких механизмов шла в нескольких направлениях:

  • уменьшение перегрева за счет транспирации;
  • защита от тепловых повреждений (опушение листьев, толстая кутикула);
  • стабилизация метаболических процессов (более жесткая структура мембран, низкое содержание воды в клетке);
  • высокая интенсивность фотосинтеза и дыхания.

В случаях, если повреждающее действие высокой температуры превышает защитные возможности морфо-анатомических и физиологических приспособлений, включается следующий механизм защиты: образуются так называемые белки теплового шока (БТШ). БТШ – это последний «рубеж обороны» живой клетки, который запускается в ответ на повреждающее действие высоких температур. Они были открыты в 1962 г. у дрозофилы, потом у человека, затем у растений (1980 г.) и микроорганизмов. БТШ помогают клетке выжить при действии температурного стрессора и восстановить физиологические процессы после его прекращения. БТШ образуются в результате экспрессии определенных генов. Некоторые из этих БТШ синтезируются не только при повышенной температуре, но и при других стресс-факторах, например, при недостатке воды, низких температурах, действии солей.

Для повышения устойчивости к высоким температурам используют различ­ные методы закаливания. Так, чередование действия повышенных температур и нормального режима, позволяет получить более жаростойкие растения. Ана­логичный эффект наблюдается после выдерживания семян пшеницы в течение 8 ч при постепенном повышении температуры от 20 до 50°С. Повышение жаро­стойкости также достигается обработкой семян хлоридом кальция, сульфатом цинка, борной кислотой.

© 2015-2019 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх