Важнейшие полимеры — молекулы ДНК и РНК — состоят из мономеров, называемых нуклеотидами. Как белки состоят из последовательно соединенных аминокислот, так и нуклеиновые кислоты — из последовательно связанных между собой нуклеотидов. Эти полинуклеотиды впервые выделил швейцарский врач Ф.Мишер (1868); он назвал это вещество нуклеином, затем немецкий химик Р. Альтман предложил название — нуклеиновая кислота, так как это вещество проявляет кислотные свойства, обнаруживаемые преимущественно в клеточном ядре. Коссель обнаружил, что в состав нуклеиновых кислот входят пуриновые (А, Г) и пиримидиновые основания (Ц, Т) и простейшие углеводы; он выделил аденин (А) и гуанин (Г), фосфорную кислоту и углеводы. Если в построении белка участвует 20 аминокислот, то нуклеотидов — всего 4 (хотя сами они — достаточно сложные образования). У всех живых существ молекулы ДНК и РНК построены по одному плану, каждый нуклеотид состоит их трех компонентов, соединенных химическими связями:
- из одной молекулы фосфорной кислоты,
- одной молекулы сахара,
- одной молекулы органического основания.
Их фосфатные группы освобождают в растворах ионы водорода. Сахар может быть в двух вариантах:
- рибоза (Р), представляющая сахар с пятью атомами углерода, к одному из которых присоединена гидроксильная группа (—ОН),
- дезок-сирибоза (Д), в молекуле которой в отличие от глюкозы не 6, а 5 атомов углерода (пентоза) и к одному из атомов углерода присоединен атом водорода.
При этом они никогда не встречаются одновременно, поэтому этим сахарам соответствуют два типа нуклеиновых кислот — ДНК и РНК.
ДНК находится в основном в ядре (хромосомах), а частично — в других клеточных компонентах (например, хлоропластах зеленых растений). Основания — другой компонент нуклеотида — названы так, потому что реагируют как основания: в кислой среде способны присоединять ион водорода. В ДНК входят:
- два пурина (А, Г),
- два пиримидина (Ц, Т),
в составе каждой из нуклеиновых кислот находится по 4 основания. Американский биохимик Э. Чаргафф сформулировал (1948) правила регулярности в парных отношениях пуриновых и пиримидиновых оснований в молекулах нуклеиновых кислот:
- общее количество гуанина и аденина (из группы пуринов Г и А) равно количеству цитизина и тимина (из группы пиримидинов Ц и Т), т.е. А + Г = Т + Ц;
- отношения А/Т и Г/Ц примерно равны единице, т.е. А = Т и Ц = Г;
- при этом Г + Т = А + Ц;
- ДНК из разных источников может иметь отличия — в одних случаях А + Т>Г + Ц, ав других — Г + Ц>А + Т.
Эти правила явились предтечей открытия двойной спирали ДНК. Для молекулы ДНК тоже характерна структура трех видов — первичная, вторичная и третичная.
Первичная структура ДНК состоит из нуклеотидных цепей, у которых скелетную основу составляют чередующиеся сахарные и фосфатные группы, соединенные ковалентными связями, а боковые части представлены одним из четырех оснований и присоединяются одна к другой молекулой сахара. Нуклеотиды расположены друг за другом и связаны ковалентно с фосфатом и сахарным остатком, образуя полинуклеотидную цепь.
Вторичная структура была сформулирована Д.Уотсоном и Ф. Криком. Две идущие рядом нити, скрепленные одна с другой перемычками и свившиеся в двойную спираль, и есть молекула ДНК. Обе нити одинаковы по длине, остатки пар А—Т и Г—Ц разделены одинаковыми расстояниями. Двойная спираль имеет упорядоченный характер, так как каждая связь основание — сахар находится на одинаковом расстоянии от оси спирали и повернута на 36°, причем в каждой из них в зависимости от вида ДНК могут быть до миллионов блоков — нуклеотидов. Порядок их чередования определяет наследственную информацию, записанную в ДНК и передаваемую следующим поколениям. Взаимодействие пар А-Т и Г-Ц называют комплементарностью, а соответствующие азотистые основания – комплементарными. Цепи ДНК комплементарны друг другу. Стабильность А-Т пар обеспечивается двумя водородными связями, а пар Г-Ц-тремя. Между азотистыми основаниями, собранными в стопку вдоль молекулы ДНК, возникают силы гидрофобных взаимодействий (стэкинг-взаимодействия) – вносят большой вклад в стабилизацию двойной спирали. Обе цепи в молекуле ДНК имеют противоположную полярность: межнуклеотидная связь в одной цепи имеет направление 5’®3’, в другой – 3’®5’.
Стабилизирующими факторами двойной спирали являются электростатические силы отталкивания между фосфатными группами, гидрофобное взаимодействие между основаниями (стэкинг-взаимодействие) и водородные связи между комплементарными основаниями.
Третичная структура ДНК, определяемая трехмерной пространственной конфигурацией молекул, пока изучена недостаточно. Исследования показали, что ДНК может существовать в двух формах: А (при низкой влажности) и В (при высокой). Для обеих форм построили молекулярные модели. Из дифракционных картин волокон ДНК информацию получить было достаточно трудно, так как у цепи ДНК вдоль оси расположены волокна беспорядочно, но была подтверждена ее спиральная структура.
Ген — участок хромосомы (или молекулы ДНК), определяющий возможность развития отдельного элементарного признака или синтез одной белковой молекулы. Гены, расположенные в одних и тех же местах хромосом и отвечающие за развитие одного признака, назвали аллельными. Поэтому доминирование — явление, при котором доминантный ген полностью подавляет проявление другого гена аллели, называемого рецессивным. Но бывает и неполное доминирование. Расщепление — это появление в потомстве нескольких групп фенотипов и генотипов. Если расщепления при скрещивании не наблюдается, то это чистая линия. Если два аллельных гена не оказывают влияния друг на друга, проявляясь в гетерозиготных организмах в полной мере, это — кодоминирование.
Генофонд — совокупность всех вариантов каждой из аллелей, характерная для популяции или вида в целом. Геном — совокупность всех генов организма. Генотип — это совокупность всех взаимодействующих генов организма. Фенотип — совокупность всех признаков организма.
Хромосома — самостоятельная структура, которая имеет плечи и центромеру и включающая две хроматиды. В хромосоме расположены в линейном порядке гены. Это — структурная единица ядра клетки, содержащая ДНК, в которой заключена вся наследственная информация организма. Процесс самоудвоения и распределение хромосомы по дочерним клеткам при клеточном делении обеспечивает передачу наследственных признаков организма следующему поколению. Совокупность хромосом в каждой клетке организма создает хромосомный набор. Такой набор постоянен и характерен для данного организма. В половых клетках каждая хромосома встречается один раз, а в большинстве соматических клеток большинства видов имеется двойной набор хромосом. Гены — элементарные единицы на молекулярно-генетическом уровне организации. Еще до открытия многих молекулярных составляющих биологи поняли, изучая передачу наследственных признаков при скрещивании, что каждый признак определен отдельной частичкой — геном. Потом установили, что гены находятся в клеточном ядре, в хромосомах. В цепях РНК и ДНК каждые три, следующие друг за другом основания составляют триплет.
Основные структуры, содержащие коды наследственной информации, представлены молекулами ДНК, состоящими из цепочки элементов кода — триплетов азотистых основании, которые образуют гены. По модели Уотсона—Крика, в молекуле ДНК генетическую информацию несет последовательность расположения оснований: А, Т, Г, Ц. Каждый триплет управляет включением в белок определенной аминокислоты. Порядок чередования аминокислот определен последовательностью триплетов. Эта элементарная единица наследственного материала была названа кодоном. Соответствие последовательностей кодонов и аминокислот носит коллинеарный характер. И синтез белков протекает в соответствии с информацией, заключенной в последовательности кодонов. Группа из трех стоящих подряд нуклеотидов, действуя через довольно сложный механизм, заставляет рибосому — внутриклеточную частицу, отвечающую за синтез белков, подхватывать из цитоплазмы определенную аминокислоту; следующие три нуклеотида через посредников «диктуют» рибосоме, какую именно аминокислоту поставить в цепочку белка на следующее место, и так получается молекула белка. Так что информации, записанной в ДНК тройками пар нуклеотидов, достаточно для построения нового организма со всеми его особенностями Репликация молекулы ДНК происходит поэтапно: разрываются водородные связи между цепями, и они разделяются; разматываются полинуклеотидные цепи; синтез вдоль каждой из цепей новой цепи с комплементарной последовательностью азотистых оснований Разделение и разматывание начинаются с одного конца молекулы, продолжаются в направлении к другому концу, сопровождаясь одновременным синтезом новых цепей. В результате каждая новая молекула ДНК состоит из одной старой цепи и одной новой, комплементарной старой. В основе комплементарности лежит свойство нуклеотидов спариваться при помощи своих оснований: А с Т, Ц с Г — в ДНК; А с У и Ц с Г — в РНК Синтез белков производится в цитоплазме под контролем ДНК. В нем принимают участие молекулы трех видов рибонуклеиновой кислоты Транспортная — тРНК — соединяется с активированными аминокислотами. Активация происходит за счет энергии, вырабатываемой митохондриями; информационная — иРНК — передает от молекул ДНК, находящихся в хромосомах, генетическую информацию о составе белка в рибосомы цитоплазмы; рибосомная — рРНК — входит в состав рибосом. Процесс синтеза осуществляют рибосомы. Предварительно на каждом гене в виде молекулы РНК синтезируется его копия. Эти копии, упакованные определенным образом, вытекают из ядра через поры его оболочки, попадают в цитоплазму, где и соединяются с рибосомами, прикрепленными к канальцам ЭПС. Как только к ним приблизятся молекулы РНК, несущие информацию от генов, начинается синтез ферментов. Готовые ферменты уплывают в цитоплазму и делают свою работу. После открытия роли ДНК и механизма синтеза белков стало ясно, что ген — это участок цепочки ДНК, на котором записано строение молекулы определенного белка. В одних генах 800 пар нуклеотидов, а в других — около миллиона.