Если мой сайт помог вам в подготовке к экзаменам вы можете отправить ссылку своим друзьям биологам.  Это сделает ресурс лучше!

Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Работы А.Н. Баха были посвящены возможности активации кислорода воздуха. Молекулярный кислород — достаточно инертное соединение. Бах выдвинул предположение, что имеются ферменты — оксигеназы, активирующие кислород. Он считал, что процесс активации состоит в том, что происходит образование пероксидных соединений. В.И. Палладии впервые стал рассматривать дыхание как ряд ферментативных реакций. Основное значение в процессе окисления он придавал процессу отнятия водорода от субстрата при участии воды. Содержание своей теории В.И. Палладии выразил в виде следующих уравнений:

С6Н1206 + 6Н20 + 12R -> 6С02 + 12RH2 + 6O2 -> 12R + 12Н20

С6Н1206 + 602  -> 6С02 + 6Н20
Символом R В.И. Палладии обозначал дыхательный пигмент, способный к обратимым окислительно-восстановительным превращениям.

  1. Непременным участником дыхания является вода.
  2. Вода наряду с окисляемым субстратом выполняет роль донора водорода.
  3. В процессе дыхания участвуют специфические активаторы водорода, отнимающие водород от субстрата.
  4. Первые этапы дыхания являются анаэробными и не требуют присутствия молекулярного кислорода.
  5. Молекулярный кислород используется на заключительном этапе дыхания для регенерации акцепторов водорода с образованием воды.

Все указанные положения легли в основу современных представлений о процессе дыхания, согласно которым дыхание происходит в две фазы — анаэробную и аэробную, и молекулярный кислород используется на регенерацию ферментов за счет Н+ воды и субстрата. В процессе дыхания активируется как водород субстрата, так и кислород воздуха.

Клеточное дыхание - универсальный процесс, присущий всем организмам, тканям, клеткам, не прекращающийся в течение всего периода жизнедеятельности и обеспечивающий энергией и пластическими веществами.
Окислительное фосфорилирование 
Дыхание - сложная многозвенная система последовательных сопряженных ферментативных окислительно-восстановительных реакций, в ходе которых происходят постепенное изменение химической природы органических соединений, трансформация и использование их внутренней энергии.

Дихотомический путь -  это основной путь распада органических веществ для всех живых организмов. Выделяют 2 этапа дихотомического пути: гликолиз и цикл Кребса.

Гликолиз — процесс анаэробного распада глюкозы, идущий гликолиз с освобождением энергии, конечным продуктом которого является пировиноградная кислота. Гликолиз — общий начальный этап аэробного дыхания и всех видов брожения. Реакции гликолиза протекают в растворимой части цитоплазмы (цитозоле) и в хлоропластах. В цитозоле гликолитические ферменты, по-видимому, организованы в мультиэнзимные комплексы с участием актиновых филаментов цитоскелета, с которыми гликолитические ферменты обратимо связываются с разной степенью прочности. Такое связывание обеспечивает векторность процесса гликолиза.

Цепь реакций, составляющих суть гликолиза, можно разбить на три этапа:

  1. Подготовительный этап — фосфорилирование гексозы и ее расщепление на две фосфотриозы.
  2. Первое субстратное фосфорилирование, которое начинается с 3-фосфоглицеринового альдегида и кончается 3-фосфоглицериновой кислотой. Окисление альдегида до кислоты связано с освобождением энергии. В этом процессе на каждую фосфотриозу синтезируется одна молекула АТФ.
  3. Второе субстратное фосфорилирование, при котором 3-фосфоглицериновая кислота за счет внутримолекулярного окисления отдает фосфат с образованием АТФ.

Энергетический выход гликолиза. При окислении одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. При этом за счет первого и второго субстратного фосфорилирования образуются четыре молекулы АТФ. Однако две молекулы АТФ тратятся на фосфорилирование гексозы на I этапе гликолиза. Таким образом, чистый выход гликолитического субстратного фосфорилирования составляет две молекулы АТФ.

В анаэробных условиях пировиноградная кислота (пируват) подвергается дальнейшим превращениям в ходе спиртового, молочнокислого и других видов брожений, при этом НАДH используется для восстановления конечных продуктов брожения, регенерируя в окисленную форму. Последнее обстоятельство поддерживает процесс гликолиза, для которого необходим окисленный НАД+. В присутствии достаточного количества кислорода пируват полностью окисляется до С02 и Н20 в дыхательном цикле, получившем название цикла Кребса, цикла ди- или трикарбоновых кислот. Все участки этого процесса локализованы в матриксе или во внутренней мембране митохондрий.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх