Если мой сайт помог вам в подготовке к экзаменам вы можете отправить ссылку своим друзьям биологам.  Это сделает ресурс лучше!

Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Клеточная инженерия — это направление в науке и селекционной практике, которое изучает методы гибридизации соматических клеток, принадлежащих разным видам, возможности клонирования тканей или целых организмов из отдельных клеток. Одним из распространенных методов селекции растений является метод гаплоидов — получения полноценных гаплоидных растений из спермиев или яйцеклеток. Получены гибридные клетки, совмещающие свойства лимфоцитов крови и опухолевых, активно размножающихся клеток. Это позволяет быстро и в нужных количествах получать антитела.

Культура тканей — применяется для получения в лабораторных условиях растительных или животных тканей, а иногда и целых организмов. В растениеводстве используют для ускоренного получения чистых диплоидных линий после обработки исходных форм колхицином. Вегетативное размножение — применяют для сохранения сортов декоративных и культурных, овощных и плодовых растений.

Генная инженерия — искусственное, целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами. Основной метод генной инженерии — выделение необходимых генов, их клонирование и введение в новую генетическую среду. Метод включает следующие этапы работы:

  • выделение гена;
  • его объединение с молекулой ДНК клетки, которая сможет воспроизводить донорский ген в другой клетке (включение в плазмиду) — кольцевую ДНК;
  • введение плазмиды в геном бактериальной клетки — реципиента;
  • отбор необходимых бактериальных клеток для практического использования;
  • исследования в области генной инженерии распространяются не только на микроорганизмы, но и на человека. Они особенно актуальны при лечении болезней, связанных с нарушениями в иммунной системе, в системе свертывания крови, в онкологии.

Биотехнология — процесс использования живых организмов и биологических процессов в производстве лекарств, удобрений, средств биологической защиты растений; для биологической очистки сточных вод, для биологической добычи ценных металлов из морской воды и т.д. Включение в геном кишечной палочки гена, ответственного за образование у человека инсулина, позволило наладить промышленное получение этого гормона.

Перспективы генной инженерии и биотехнологии:

  • создание организмов, полезных для человека;
  • получение новых лекарственных препаратов;
  • коррекция и исправление генетических патологий.

Клеточная инженерия связана с культивированием отдельных клеток или тканей на специальных искусственных средах. Показано, что если взять кусочки ткани или отдельные клетки из разных органов, допустим, растений, хотя это возможно и у животных, и пересадить их на специальные среды, содержащие минеральные соли, аминокислоты, гормоны и другие питательные компоненты, то они способны расти. Это значит, что в таких изолированных от организма тканях и клетках продолжаются клеточные деления. Но самым важным и интересным оказалось то, что отдельные растительные клетки (в отличие от клеток животных) в таких искусственных условиях обладают тотипотентностью, т.е. способны к регенерации (формированию) полноценных растений. Эта их способность и была использована для селекции в разных направлениях.

Если необходимо, например, получить солеустойчивые растения, то составляется специальная питательная среда для культивирования клеток растений с повышенным содержанием солей (NaCl) и высеиваются на эти среды в чашках Петри тысячи растительных клеток. Большинство таких клеток, не выдерживая высокие концентрации солей, гибнет, но отдельные выживают и из них, как наиболее солеустойчивых, могут регенирировать целые растения. Это один из примеров селекции на клеточном уровне, когда отбору подвергаются не растения, а клетки, из которых потом воспроизводятся растения.

Выведение растений устойчивых к неблагоприятным внешним факторам (рН почвы, ранние заморозки, засолению и т.д.) генно-инженерными методами.

В настоящее время под устойчивостью (чувствительностью) ра­стения к заморозкам понимают способность (неспособность) противо­стоять механическим повреждениям их тканей кристаллами льда, об­разующимися при низкой температуре. Это сложный комплексный признак, зависящий как от физиологических и биохимических особен­ностей самого растения, так и от внешних причин. Существенный фактор повреждения многих растений ранними заморозками — эпифитная и сапрофитная микрофлора, главным об­разом представители родов Pseudomonas, Erwinia, Xantomonasи др. Клетки данных микроорганизмов способны синтезировать опреде­ленный белок, локализующийся во внешней мембране этих бактерий и являющийся превосходным центром кристаллизации льда уже при температурах -1,5... -1,8 °С.

Перечисленные бактерии, главным обра­зом широко распространенные сапрофитные микроорганизмы видов Ps. syringaeи Ps. fluoresceins, образуют поверхностный белок, служа­щий зародышем для формирования кристаллов льда (БФКЛ); он, собственно, и является одним из главных факторов, ответственных за повреждение тканей чувствительных растений при ранних замороз­ках. Стерильные же растения не повреждаются вплоть до темпе­ратур порядка -6... -8 С. Мутанты бактерий, потерявшие способ­ность синтезировать БФКЛ, формировали обычную сапрофитную микрофлору растений, которая, однако, не повышала температуру формирования кристаллов льда. В результате растения с такой му­тантной микрофлорой, не синтезирующей данный белок, были устой­чивы к заморозкам в условиях, когда растения с естественной микро­флорой повреждались при понижении температуры.

В основе генно-инженерного подхода к борьбе с повреждающим действием ранних заморозков лежит тот факт, что БФКЛ-мутанты Ps. syringaeи Ps. fluorescens, как природные, так и эксперименталь­но полученные, теряют способность повреждать сельскохозяйствен­ные растения (цитрусовые, томаты, картофель) при низких темпера­турах. Поэтому возникла идея получить стабильные мутанты назван­ных бактерий, неспособные возвращаться к дикому типу, и вытеснить с их помощью природную микрофлору, синтезирующую БФКЛ.

Методы клеточной инженерии перспективны и в животноводстве. Уже накоплен большой опыт культивирования соматических клеток животных in vitro, разработаны оптимальные среды и режимы культивирования, отработаны способы длительного хранения клеток при низких температурах. На первое место следует поставить уже достаточно хорошо разработанный метод разделения ранних эмбрионов. С развитием трансплантации в руках исследователей появилось достаточное количество ранних эмбрионов, что дало мощный импульс работам по манипуляции с этими объектами. Первый успешный опыт по разделению эмбрионов на стадии 2—8 бластомеров был осуществлен Виллардом (Кембридж, Великобритания). Сущность метода заключается в том, что предварительно вскрывается прозрачная зона (pellucida), эмбрион разделяется на две части. При этом одна половина остается в прежней зоне, а другую переносят в заранее подготовленную зону и производят обычную трансплантацию. Во многих опытах приживляемость разделенных эмбрионов достигает 50—60% В другом опыте были достигнуты еще лучшие результаты при хирургическом введении каждой половинки эмбриона в рог матки на той стороне, где локализовалось желтое тело (65% стельности). Стало очевидным, что разделение эмбрионов — эффективный метод увеличения потомства коров-доноров. В настоящее время эта методика начинает внедряться в практику племенного дела. Уже получены животные от трансплантации половинок эмбрионов свиней (США, Р. У. Роунтри). По данным ряда исследователей, число потомков может быть увеличено на 30—35%.

Возможность массового получения идентичных двоен (генетических копий) очень важна. Эти животные имеют большую ценность для исследователей, занимающихся проблемой взаимодействия генотипа и среды. Использование идентичных двоен позволяет повысить точность исследований и достичь достоверных результатов при меньшем числе подопытных животных. Кроме того, наличие идентичных близнецов позволяет на одном из них проводить изучение признаков, требующих убоя животного (например, мясные качества), и переносить эти данные на близнеца, что является методически вполне обоснованным К важнейшим проблемам животноводства относится разра-ботка методов регулирования пола сельскохозяйственных животных. Непредсказуемость пола рождаемых животных может приобретать значительную важность, если экономическое значение животных одного пола существенно выше экономического значения животных другого пола.

Пока достигнут лишь незначительный прогресс в решении проблемы контролирования соотношения полов и в разработке методов его регуляции. Идеальным методом контролирования соотношения полов могло бы стать разделение спермиев, несущих Х- и У-хромосомы. Очевидно, именно в этом направлении должны интенсивно развиваться исследования. Другим подходом для воздействия на соотношение полов является определение пола у ранних эмбрионов после извлечения из репродуктивного тракта самки и перед их трансплантацией.

В медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Антибиотики — самый большой класс фармацевтических соединений, получение которых осуществляется с помощью микробиологического синтеза. Созданы генноинженерные штаммы кишечной палочки, дрожжей, культивируемых клеток млекопитающих и насекомых, используемые для получения ростового гормона, инсулина и интерферона человека, различных ферментов и противовирусных вакцин. Изменяя нуклеотидную последовательность в генах, кодирующих соответствующие белки, оптимизируют структуру ферментов, гормонов и антигенов (так наз. белковая инженерия). Важнейшим открытием явилась разработанная в 1975 Г. Келером и С. Мильштейном техника использования гибридом для получения моноклональных антител желаемой специфичности. Моноклональные антитела используют как уникальные реагенты, для диагностики и лечения различных заболеваний.

Биотехнология в сельском хозяйстве

Вклад биотехнологии в сельскохозяйственное производство заключается в облегчении традиционных методов селекции растений и животных и разработке новых технологий, позволяющих повысить эффективность сельского хозяйства. Во многих странах методами генетической и клеточной инженерии созданы высокопродуктивные и устойчивые к вредителям, болезням, гербицидам сорта сельскохозяйственных растений. Разработана техника оздоровления растений от накопленных инфекций, что особенно важно для вегетативно размножаемых культур (картофель и др.).

Как одна из важнейших проблем биотехнологии во всем мире широко исследуется возможность управления процессом азотфиксации, в том числе возможность введения генов азотфиксации в геном полезных растений, а также процессом фотосинтеза. Ведутся исследования по улучшению аминокислотного состава растительных белков. Разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от болезней и вредителей, бактериальные удобрения. Генноинженерные вакцины, сыворотки, моноклональные антитела используют для профилактики, диагностики и терапии основных болезней сельскохозяйственных животных. В создании более эффективных технологий племенного дела применяют генноинженерный гормон роста, а также технику трансплантации и микроманипуляций на эмбрионах домашних животных. Для повышения продуктивности животных используют кормовой белок, полученный микробиологическим синтезом.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх