Доказательства роли ДНК в наследственности
После того как было установлено, что гены находятся в хромосомах и расположены там в определенном порядке, возник вопрос об их химический природе. Ученым было известно, что в состав хромосом высших организмов входят ДНК и несколько типов гистоновых и негистоновых белков. До 40-х годов нашего столетия большинство ученых считали, что гены имеют белковую природу. Русский ученый Н. К. Кольцов высказал мысль, что хромосома это гигантская биологическая молекула, обладающая свойством самоудвоения, и что все свойства и признаки организма обусловлены строением белка и взаимодействием его молекул. Казалось вероятным, что именно в 6елках заключена наследственная информация о развитии всех признаков и свойств организма. Однако проведенные в последующем эксперименты на микроорганизмах с применением новейших методов исследований позволили установить, что генетическая информация сосредоточена в нуклеиновых кислотах. В 1944 году американский микробиолог Эвери из бактерий штамма S выделил ДНК и внес ее в питательную среду, на которой размножались бактерии авирулентного штамма R. Значительная часть авирулентных бескапсульных бактерий штамма R трансформировалась в капсульные вирулентные бактерии S -штамма. Это явление дало Эвери основание утверждать о ведущей роли ДНК в переносе наследственной информации от одного штамма бактерий к другому.
Другой эксперимент, подтверждающий роль ДНК в наследственности, провели американские ученые И. Чейз и Херши. Они размножали ДНК-содержащий вирус-бактериофаг на среде, содержащей радиоактивные фосфор и серу Р35 и S33. Радиоактивная сера включилась в серусодержащие белки оболочки фага, а радиоактивный фосфор - в ДНК. Далее мечеными радиоактивными изотопами фагами заражали бактерии. С помощью электронного микроскопа было установлено, что радиоактивная сера не проникала в клетку бактерии, внутри клетки был обнаружен только радиоактивный фосфор. Это свидетельствовало о том, что при заражении бактерии фагом внутрь клетки проникает только ДНК. В зараженной клетке образовалось множество вирионов фага. Следовательно, генетическая информация, необходимая для синтеза ДНК фагов, содержится в ДНК проникших в клетку вирусов. Доказательством ведущей роли ДНК в наследственности является и то, что она локализована главным образом в хромасомах, поэтому молекулярная генетика не противоречит хромосомной теории наследственности и законам классической генетики.
Строение и синтез ДНК.
В период с 1900 по 1932 год был выяснен химический состав ДНК. Было установлено, что в ее состав входят:
- остатки фосфорной кислоты,
- углеводный компонент,
- дезоксирибоза,
- четыре типа азотистых оснований, два производных пурина (аденин и гуанин) и два производных пиримидина (тимин и цитозин).
Э. Чаргафф установил, что в ДНК содержание аденина равно содержанию тимина (А=Т), а содержание гуанина равно содержанию цитозина (А=Ц). Отсюда: (А+Г) : (Т+Ц) = 1, т. е. сумма пуриновых нуклеотидов равна сумме пиримидиновых. Такая закономерность указывают на комплементарное соединение пуриновых и пиримидиновых оснований в молекуле ДНК. Приоритет в расшифровке структуры молекулы ДНК принадлежит Д. Уотсону и Ф. Крику. Согласно их модели, молекула ДНК имеет двойную спираль, состоящую из двух нуклеотидных цепей с общей осью. Диаметр двойной спирали ДНК равен 2 нм, а расстояние между витками 3,4 нм. На каждый виток спирали приходится 10 пар нуклеотидов, отсюда расстояние между азотистыми основаниями равно 0,34 нм. Каждая из цепей ДНК является полинуклеотидом и состоит из 4 типов нуклеотидов.
В состав нуклеотида входят:
- дезоксирибоза (Д),
- остаток фосфорной кислоты (Ф) ,
- одно из четырех азотистых оснований (А,Г,Ц и Т).
Соединение пуриновых и пиримидиновых оснований с дезоксирибозой приводит к образованию нуклеозида. При присоединении фосфорного остатка к углеводной части нуклеозида образуется нуклеотид. Дезоксирибоза в нуклеотидах соединяется с основаниями гликозидной связью, а с остатками фосфорной кислоты - эфирными связями. Азотистые основания нуклеотидов обоих цепей заключены внутри между витками спирали и соединены водородными связями. Причем аденин одной цепи всегда связан только с тимином другой цепи, а гуанин - только с цитозином. Пара А - Т соединена двумя водородными связями, а пара Г-Ц - тремя. Такой порядок азотистых оснований называется комплементарностью. Коэффициентом видовой специфичности называют отношение (А+Т): (Г+Ц).
Репликация ДНК.
ДНК является веществом, количество которого строго постоянно во всех клетках организма. ДНК находится в хромосомах, и репликация ее происходит перед каждым удвоением хромосом и делением клетки. На отдельных участках молекулы ДНК образуются так называемые вилки репликации. В этих местах водородные связи между азотистыми основаниями под действием ферментов разрываются, комплементарные нити разъединяются и каждая из них становится матрицей, на которой происходит синтез дочерних нитей. Такой тип репликации ДНК получил название полуконсервативного. Процесс синтеза протекает при участии комплекса ферментов, главнейшим из которых является ДНК-полимераза. Участок ДНК в том месте, где начали расплетаться комплементарные нити, называется вилкой репликации. Она образуется у прокариот в одной определенной, генетически фиксированной точке. В молекуле ДНК эукариот таких "стартовых точек" бывает несколько. Синтез новых комплементарных цепей при репликации ДНК происходит по частям. Эти отрезки, состоящие из 1000-2000 нуклеотидов, называют фрагментами Оказаки. Структура, способная к репликации (хромосома, плазмида, вирусный геном), называется репликоном. Репликация обеспечивает материальную непрерывность наследственного вещества клетки.
Строение, синтез и типы РНК
Молекулы рибонуклеиновой кислоты имеют одну полинуклеотидную цепь. В состав молекулы РНК входят четыре типа азотистых оснований (аденин, гуанин, цитозин и урацил), сахар рибоза и остатки фосфорной кислоты. По составу от ДНК она отличается тем, что вместо дезоксирибозы содержит рибозу и вместо пуринового основания тимина - урацил. Схему строения молекулы РНК можно представить следующим образом? У где, А,Г,Ц,У - азотистые основания, Р - рибоза и Ф - остатки фосфорной кислоты. Синтез молекулы РНК происходит на одной из цепей молекулы ДНК. Этот процесс протекает с участием большого числа ферментов и называется транскрипцией. Причем двойная цепь ДНК раскручивается и на одной из ее цепей, которая называется смысловой синтезируется РНК. В организме существуют три основных типа РНК:
- информационная (и-РНК), или матричная (м-РНК),
- рибосомальная (р-РНК),
- транспортная (т-РНК).
Эти типы РНК различаются по величине молекул и функциям.
Информационная РНК. Роль информационной РНК заключается в том, что она переписывает информацию с молекулы ДНК и переносит ее к месту синтеза белка. В рибосомах и-РНК выполняет роль матрицы в процессе биосинтеза белка. Транспортные РНК выполняют функцию переноса аминокислот к месту синтеза белка. Молекула т-РНК напоминает форму клеверного листа. На конце одной цепи находится акцепторный участок - триплет ЦЦА, к которому прикрепляется аминокислота. В центре средней петли находится антикодон - триплет, состоящий из трех нуклеотидов комплементарных генетическому коду и - РНК. Рибосомальная РНК синтезируется в ядрышках, затем поступает в цитоплазму. Объединяясь с особыми белками, она образует рибосомы, в которых осуществляется биосинтез белков. Количество рибосомальной РНК составляет около 80 процентов.
Генетический код является триплетным. Кроме того, к свойствам генетического кода относят:
- триплетность
- вырожденность,
- неперекрываемость,
- универсальность.
Вырожденность генетического кода заключается в том, что, как правило, одну аминокислоту кодируют не один, а несколько триплетов. В генетическом коде есть аминокислоты, кодируемые одним, двумя, тремя, четырьмя и шестью триплетами. Неперекрываемость генетического кода связана с тем, что каждый из нуклеотидов входит только в один из кодонов и считывание идет в одном направлении - триплет за триплетом. Генетический код универсален. Это значит, что у животных, растений, бактерий и вирусов одну и ту же аминокислоту кодируют одинаковые сочетания. Процесс реализации наследственной информации в биосинтезе белка осуществляется при участии трех видов РНК, ферментов, АТФ и других компонентов. Передачу наследственной информации с ДНК на белок можно представить следующим образом: ДНК → и-РНК → белок. Процесс биосинтеза сложный и включает ряд этапов:
- транскрипцию,
- сплайсинг,
- трансляцию.
Первый этап называется транскрипцией. Он происходит в ядре клетки. В результате транскрипции наследственная информация с ДНК переписывается на и-РНК. Этот процесс осуществляется при участии ряда ферментов, главным из которых является РНК-полимераза. Исследования показали, что в результате транскрипции синтезируется проматричная РНК, которая значительно больше по размеру и содержит фрагменты не несущие наследственной информации. Они получили название интронов в отличие от кодирующих фрагментов, которые называются экзонами. Интроны считываются с молекулы ДНК одновременно с экзонами, поэтому про-м-РНК значительно длиннее, чем зрелая м-РНК. В дальнейшем интроны "вырезаются" из молекулы РНК, а фрагменты экзонов "сращиваются" между собой в строгом порядке. Этот процесс называется сплайсингом. В процессе сплайсинга образуется зрелая м-РНК, которая содержит только ту информацию, которая необходима для синтеза белков.
Следующий этап биосинтеза - трансляция. Этот процесс происходит на рибосомах при участии т-РНК. Молекула и-РНК после сплайсинга через поры ядра выходит в цитоплазму и прикрепляется к рибосоме. Трансляция начинается с так называемого стартового кодона - АУТ. Активированные аминокислоты прикрепляются к т-РНК и переносятся к рибосомам. Здесь они в соответствии с генетическим кодом соединяются в полипептидную цепь. Молекула и-РНК обычно работает на нескольких рибосомах (5-20), соединенных в полисомы. Начало синтеза полипептидной цепи называется инициацией. Последовательность аминокислот в молекуле белка определяется последовательностью кодонов в и-РНК. Синтез полипептидной цепи прекращается, когда, на и-РНК появляется один из кодонов -терминаторов (УАА, УАГ или УГА).
Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические районы хромосом.
Хромосомы состоят из двух хроматид, объединенных первичной перетяжкой. По положению центромеры хромосомы делятся на:
- метацентрические (равноплечие),
- субметацентрические (неравноплечие),
- акроцентрические (центромера лежит у одного из концов хромосомы, последняя представляет собой палочку с очень коротким или даже незаметным вторым плечом),
- телоцентрические - палочковидные хромосомы с центромерой, расположенной на проксимальном конце.
Хромомеры, по мнению одних исследователей, представляют собой плотно спирализованные участки, по мнению других - уплотнения нуклеопротеидного материала. Промежутки между хромомерами называются межхромомерными нитями.
Политения — редупликация хромонем в хромосомах, приводящая к увеличению числа хромонем без увеличения числа хромосом и без реорганизации ядра. Этот процесс, протекающий внутри хромосом, приводит к полиплоидизации количества.
Эухроматин, активный хроматин, участки хроматина (вещества хромосом), сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе. Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков.
Гетерохроматин, участки хромосом, остающиеся в промежутке между делениями клетки, т. е. в интерфазе, уплотненными (в отличие от др. участков — эухроматина). Гетерохроматин иногда тесно связан с ядрышком, образуя вокруг него подобие кольца или оболочки. Во время митоза Гетерохроматин окрашивается сильнее или слабее, чем эухроматин (явление положительного или отрицательного гетеропикноза).
Изменения в организации морфологии хромосом в ходе митоза и мейоза. Репликация хромосом. Политения. Онтогенетическая изменчивость хромосом. Хромосомы в период митоза и мейоза
При переходе клетки к делению синтез ДНК и РНК в хромосомах прекращается, хромосомы приобретают всё более плотную упаковку (например, в одной хромосоме человека цепочка ДНК длиной 160 мм укладывается в объёме всего 0,5´10 мкм), ядерная мембрана разрушается и хромосомы выстраиваются на экваторе клетки. Основная структурная единица метафазныххромасом, так же как и интерфазных, — нить ДНП диаметром 100—200, уложенная в плотную спираль. Каждая метафазная хромасома состоит из хроматид, образовавшихся в результате репликации исходной интерфазной хромосомы. Использование меченых и модифицированных предшественников ДНК позволило четко различать в хромосоме, находящейся в метафазе митоза, дифференциально окрашенные хроматиды, благодаря чему было установлено, что при репликации хромосом нередко происходит обмен участками между сестринскими хроматидами (кроссинговер). Современные цитологи рассматривают матрикс метафазных хромосом, как остаточный материал разрушающегося ядрышка; часто он вовсе не обнаруживается.
Политения — редупликация хромонем в хромосомах, приводящая к увеличению числа хромонем без увеличения числа хромосом и без реорганизации ядра. Этот процесс, протекающий внутри хромосом, приводит к полиплоидизации количества.
Хроматин - основной компонент клеточного ядра; его достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что по суммарному химическому составу хроматин из интерфазных ядер мало отличается от хроматина из митотических хромосом. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки. В среднем в хроматине около 40% приходится на ДНК и около 60% - на белки, среди которых специфические ядерные белки-гистоны составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того, в состав хроматиновой фракциям входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами.
Различают четыре уровня организации ядерного хроматина. Первый - уровень нуклеосомной фибриллы. В нуклеосоме различают сердцевинную часть и линкерную область. Сердцевинная часть соответствует «бусинам», а линкерная - связывающему «бусины» участку базовой ДНК. Сердцевинная и линкерная области образуют полную нуклеосому. Размеры полной нуклеосомы могут варьироваться у разных видов. Второй уровень пространственной структуры хроматина - соленоид позволяет «сложить» ДНК с ее спутниками - белками еще более компактно. Соленоидная структура образуется в результате свертывания (на манер спирали) нуклеосомной нити и в одних местах носит более-менее регулярный характер, в других - неравномерный - здесь наблюдается как бы «сгущение» витков. Третий уровень организации (компактизации) ДНК в хроматине определяется укладкой соленоидной структуры в петли, опирающиеся, как полагают, на скелетные осевые образования хромосом. Длина петли - до 90 тысяч пар нуклеотидов. Материалом для скелетных нитей (для ядерного скелета) служат белки. Эти нити получили название «нуклеонемы». Четвертый уровень организации хроматина представлен хромосомами. Механизм формирования этих органелл еще не ясен. Но несомненно, что активация генов подразумевает глубокие изменения пространственных структур хромосом: налицо связь организации хроматина и регуляции работы генов. Кольцевые ДНК могут образовывать особую пространственную структуру - суперспираль. Суперспирализация опять же зависит от биохимии плазмы клетки.