Если мой сайт помог вам в подготовке к экзаменам вы можете отправить ссылку своим друзьям биологам.  Это сделает ресурс лучше!

Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

В качестве вакцин используются антигены разного происхождения, это могут быть живые и убитые бактерии, вирусы, анатоксины, а также антигены, полученные с помощью генной инженерии и синтетические.

От состава вакцин во многом зависят их иммунобиологические свойства, способность индуцировать специфический иммунный ответ. Однако некоторые составные части вакцин могут вызвать и нежелательные реакции, что следует учитывать при проведении иммунизации.

Существующее многообразие вакцин можно подразделить на две основные группы:

  • живые,
  • убитые (инактивированные).

В свою очередь каждая из этих групп может быть разделена на подгруппы.

Живые вакцины - из аттенуированных штаммов возбудителя (штаммы с ослабленной патогенностью).

Убитые вакцины- молекулярные, полученные путем:

  • биологическогосинтеза;
  • химического синтеза.

Корпускулярные:

  • из цельных микробов;
  • из субклеточных надмолекулярных структур.

В последние годы созданы синтетические молекулярные вакцины, а также плазмидные (генные) вакцины.

Постановка вопроса о предпочтительном выборе либо живых, либо убитых вакцин является неоправданной, так как в каждом конкретном случае эти принципиально разные препараты имеют свои преимущества и свои недостатки.

Традиционные вакцины:

  1. Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не требуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз (бустерные иммунизации).
  2. Живые аттенуированнные требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины). На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.
  3. Анатоксины, вызывающие заболевания у человека, опасны тем, что выделяют экзотоксины, которые являются основными патогенетическими факторами заболевания (например, дифтерия, столбник). Анатоксины, используемые в качестве вакцин, индуцируют специфический иммунный ответ. Для получения вакцин токсины чаще всего обезвреживают с помощью формалина.

Использование новых технологий позволило создать:

  1. Конъюгированные. Некоторые бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию (гемофилюс инфлюэнце, пневмококки), имеют антигены, трудно распознаваемые незрелой иммунной системой новорожденных и грудных детей. В конъюгированных вакцинах используется принцип связывания таких антигенов с протеинами или анатоксинами другого типа микроорганизмов, хорошо распознаваемых иммунной системой ребенка. Протективный иммунитет вырабатывается против конъюгированных антигенов (например, сочетание антигенов Haemophilus influenzae и обеспечивающего иммуногенность вакцины дифтерийного анатоксина).
  2. Субъединичные вакцины. Субъединичные вакцины состоят из фрагментов антигена, способных обеспечить адекватный иммунный ответ. Эти вакцины могут быть представлены как частицами микробов, так и получены в лабораторных условиях с использованием генно-инженерной технологии. Примерами субъедиинчных вакцин, в которых используются фрагменты микроорганизмов, являются вакцины против Streptococcus pneumoniae и вакцина против менингококка типа А. Рекомбинантные субъединичные вакцины (например, против гепатита B). Вакцину против вируса гепатита В готовят из поверхностных белков (субъединиц) вирусных частиц (HBs антиген). Вакцину получают на рекомбинантной основе- с помощью дрожжевых клеток с плазмидой, кодирующей HBs антиген. В результате экспрессии вирусного гена происходит наработка антигенного материала, который затем очищается и связывается с адъювантом. В результате получается эффективная и безопасная вакцина.
  3. Рекомбинантные векторные вакцины. Вектор, или носитель, - это ослабленные вирусы или бактерии, внутрь которых может быть вставлен генетический материал от другого микроорганизма, являющегося причинно-значимым для развития заболевания, к которому необходимо создание протективного иммунитета. Если носителем (вектором) является вирус осповакцины, то данная вакцина будет в организме индуцировать иммунитет не только против оспы, но и против того возбудителя, чей ген был встроен в его геном (если ген HBs антигена - против вируса гепатита В). Если вектором является плазмида, то при размножении рекомбинантного клона микроорганизма (дрожжей, например) нарабатывается необходимый антиген, который и используется в дальнейшем для производства вакцин. Вирус коровьей оспы используется для создания рекомбинантных векторных вакцин, в частности, против ВИЧ-инфекции. Подобные исследования проводятся с ослабленными бактериями, в частности, сальмонеллами, как носителями частиц вируса гепатита B. В настоящее время широкого применения векторные вакцины не нашли.
  4. Синтетические олигопептидные вакцины. Принципы их конструирования включают синтез пептидных последовательностей, образующих эпитопы, распознаваемые нейтрализующими антителами.
  5. Кассетные или экспозиционные вакцины. В качестве носителя используют белковую структуру, на поверхности которой экспонируют (располагают) введенные химическим или генно - инженерным путем соответствующие определенные антигенные детерминанты. В качестве носителей при создании искусственных вакцин могут использовать синтетические полимеры- полиэлектролиты.
  6. Липосомальные вакцины. Они представляют собой комплексы, состоящие из антигенов и липофильных носителей (пример - фосфолипиды). Иммуногенные липосомы более эффективно стимулируют выработку антител, пролиферацию Т - лимфоцитов и секрецию ими ИЛ- 2.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015-2020 © Биология для студентов | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх