Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Каждый белок характеризуется специфической аминокислотной последовательностью и индивидуальной пространственной структурой (конформацией). На долю белков приходится не менее 50% сухой массы органических соединений животной клетки. В организме человека насчитывается до 5 млн. различных видов белков. Белковая молекула может состоять из одной или нескольких цепей, содержащих от пятидесяти до нескольких сотен аминокислотных остатков. Молекулы, содержащие менее пятидесяти остатков, относят к пептидам. В состав многих молекул входят остатки цистеина, дисульфидные связи которых ковалентно связывают участки одной или нескольких цепей. В нативном состоянии белковые макромолекулы обладают специфической конформацией. Характерная для данного белка конформация определяется:

  • последовательностью аминокислотных остатков и стабилизируется водородными связями между пептидными и боковыми группами аминокислотных остатков,
  • электростатическими и гидрофобными взаимодействиями.

Первичная структура белка. Пептидная связь образуется при реакции аминогруппы одной аминокислоты и карбоксильной группы другой с выделением молекулы воды:

 CH3-CH(NH2)-COOH + CH3- CH(NH2)-COOH ^ CH3-CH(NH2)-CO- NH-(CH3) СН-COOH + H2O

Связанные пептидной связью аминокислоты образуют полипептидную цепь. Пептидная связь имеет плоскостную структуру:

  • атомы С, О и N находятся в sp -гибридизации;
  • у атома N имеется р-орбиталь с неподеленной парой электронов;
  • образуется р-п-сопряженная система, приводящая к укорочению связи С-N (0,132 нм) и ограничению вращения (барьер вращения составляет ~63 кДж/моль).

Пептидная связь имеет преимущественно трансконфигурацию относительно плоскости пептидной связи. Подобное строение пептидной связи сказывается на формировании вторичной и третичной структуры белка. Пептидная связь жесткая, ковалентная, генетически детерминированная. В структурных формулах изображается в виде одинарной связи, однако на самом деле эта связь между углеродом и азотом носит характер частично двойной связи. Это вызвано различной электроотрицательностью атомов С, N и O. Вокруг пептидной связи вращение невозможно, все четыре атома лежат в одной плоскости, т.е. компланарны. Вращение же других связей вокруг полипептидного остова достаточно свободно. Последовательность аминокислот для каждого белка уникальна и закреплена генетически.

По числу аминокислотных остатков, входящих в молекулы пептидов, различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до десяти аминокислотных остатков, называются олигопептидами, содержащие более десяти аминокислотных остатков - полипептидами. Природные полипептиды с молекулярной массой более 6000 называются белками.

Вторичная структура - это пространственное расположение полипептидной цепочки в виде а-спирали или Р-складчатости безотносительно к типам боковых радикалов и их конформации. Л. Полинг и Р. Кори предложили модель вторичной структуры белка в виде а-спирали, в которой водородные связи замыкаются между каждой первой и четвертой аминокислотой, что позволяет сохранять нативную структуру белка, осуществлять простейшие функции, защищать от разрушения. В образовании водородных связей принимают участие все пептидные группы, что обеспечивает максимальную стабильность, снижает гидрофильность и увеличивает гидрофобность белковой молекулы. а-спираль образуется самопроизвольно и является наиболее устойчивой конформацией, отвечающей минимуму свободной энергии. Наиболее распространенным элементом вторичной структуры является правая а-спираль (aR). Пептидная цепь здесь изгибается винтообразно. Ha каждый виток приходится 3,6 аминокислотного остатка, шаг винта, т.е. минимальное расстояние между двумя эквивалентными точками, составляет 0,54 нм; а-спираль стабилизирована почти линейными водородными связями между NH-группой и СО-группой четвертого по счету аминокислотного остатка. Неполярные или амфифильные а-спирали с 5-6 витками часто обеспечивают заякоривание белков в биологических мембранах (трансмембранные спирали). B складчатых структурах также образуются поперечные межцепочечные водородные связи Если цепи ориентированы в противоположных направлениях, структура называется антипараллельным складчатым листом (ва); если цепи ориентированы в одном направлении, структура называется параллельным складчатым листом (вп). Кроме регулярных в полипептидных цепях есть еще и нерегулярные вторичные структуры, т.е. стандартные структуры, не образующие длинных периодических систем. Это - в-изгибы они называются так потому, что часто стягивают верхушки соседних в-тяжей в антипараллельных в-шпильках). В изгибы обычно входит около половины остатков, не опавших в регулярные структуры белков.

Связи, стабилизирующие третичную структуру:

  • электростатические силы притяжения между R-группами, несущими противоположно заряженные ионогенные группы (ионные связи);
  • водородные связи между полярными (гидрофильными) R-группами;
  • гидрофобные взаимодействия между неполярными (гидрофобными) R-группами;
  • дисульфидные связи между радикалами двух молекул цистеина.

Эти связи ковалентные. Они повышают стабильность третичной структуры, но не всегда являются обязательными для правильного скручивания молекулы. В ряде белков они могут вообще отсутствовать.

Третичная структура - уникальное для каждого белка расположение в пространстве полипептидной цепи, зависящее от количества и чередования аминокислот, т.е. предопределенное первичной структурой белка. Конфигурация белковых молекул может быть фибриллярной и глобулярной. Третичная структура многих белков составляется из нескольких компактных глобул, называемых доменами. Между собой домены обычно бывают связаны тонкими перемычками вытянутыми аморфными полипептидными цепями Кроме того, в белках встречаются мотивы укладки полипептидной цепи, похожие на орнаменты на индейских и греческих вазах: мотив меандра, мотив греческого ключа, мотив зигзага-"молнии" При свертывании белковой глобулы значительная часть (не менее половины) гидрофобных радикалов аминокислотных остатков оказывается скрытой от контакта с окружающей белок водой. Происходит образование своеобразных внутримолекулярных «гидрофобных ядер». В них особенно представлены объемные остатки лейцина, изолейцина, фенилаланина, валина. С появлением третичной структуры у белка появляются новые свойства - биологические. В частности, проявление каталитических свойств связано с наличием у белка третичной структуры. Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру. Большинство фибриллярных белков не растворяется в воде, имеют большую молекулярную массу и высокорегулярную пространственную структуру, которая стабилизируется, главным образом, взаимодействиями (в том числе и ковалентными) между различными полипептидными цепями. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои. Глобулярные белки — белки, в молекулах которых полипептидные цепи плотно свёрнуты в компактные шарообразные структуры — глобулы (третичные структуры белка).

Четвертичная структура - это надмолекулярное образование, состоящее из двух и более полипептидных цепей, связанных между собой нековалентно, а водородными связями, электростатическими, дипольдипольные и гидрофобными взаимодействиями между остатками аминокислот, находящихся на поверхности. Каждый из белков-участников третичной структуры при образовании четвертичной структуры называют субъединицей или протомером. Образовавшуюся молекулу называют олигомером, или мультимером. Олигомерные белки чаще построены из четного количества протомеров с одинаковыми или разными молекулярными массами. В образовании четвертичной структуры белка принимают участие те же связи, что и при образовании третичной структуры, за исключением ковалентных. Характерной особенностью белков с четвертичной структурой является их способность к самосборке. Взаимодействие протомеров осуществляется с высокой специфичностью, благодаря образованию десятка слабых связей между контактными поверхностями субъединиц, поэтому ошибки при формировании четвертичной структуры белков исключены.

Практически все белки-ферменты имеют четвертичную структуру и состоят, как правило, из четного числа протомеров (двух, четырех, шести, восьми). Четвертичная структура белка подразумевает такое объединение белков третичной структуры, при котором появляются новые биологические свойства, не характерные для белка в третичной структуре.

Пространственная конфигурация белка т.е. третичная и четвертичная структуры называется конформацией. Если полипептидную цепь взять за концы, растянуть ее и затем отпустить, то она всякий раз будет свертываться в одну и ту же структуру, характерную для этого вида полипептида. В то же время из сказанного, очевидно, следует, что, изменив всего лишь одну аминокислоту в каком-либо полипептиде, мы получим молекулу с совершенно иной структурой, а значит и с иными свойствами.

По химическому составу все белки делят на простые, состоящие только из аминокислотных остатков, и сложные. Сложные могут включать ионы металла (металлопротеины) или пигмент (хромопротеины), образовывать прочные комплексы с липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеины), углевода (гликопротеины).

Простые белки подразделяют на:

  • фибриллярные, растворимые в воде (актин, миозин) и нерастворимые (кератин, эластин, коллаген),
  • глобулярные (альбумины, глобулины, протамины, гистоны, проламины).

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх