Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Гликолиз - это последовательность ферментативных реакций, приводящих к превращению глюкозы в пируват с одновременным образованием ATP.
На возможность бесклеточного спиртового Б. впервые (1871) указала рус. врач-биохимик М. М. Манассеина. Нем. химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживаю-щий сахар с образованием спирта и СО2. При нагревании до 500С и выше сок утрачивал бродильные свойства. Всё это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Рус. химик Л. А. Иванов обнаружил (1905), что добавленные к дрожжевому соку фосфаты в неск. раз повышают скорость Б. Исследования отечеств, биохимиков А. Н. Лебедева, С. П. Костычева, Я. О. Парнаса и нем. биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная к-та участвует в важнейших этапах спиртового Б.

Анаэробный гликолиз - сложный ферментативный процесс распада глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется ATP. Суммарное уравнение гликолиза можно представить следующим образом:
С6Н1?06 + 2АДФ + 2Фн->2СН,СН(ОН)СООН + 2АТФ + 2НгО.
Глюкоза    Молочная кислота
Анаэробное превращение глюкозы локализуется в цитозоле и включает два этапа из 11 ферментативных реакций.

Первый этап гликолиза – подготовительный, здесь происходит затрата энергии АТФ, активация глюкозы и образование из нее триозофосфатов.
Первая реакция гликолиза сводится к превращению глюкозы в реакционно-способное соединение за счет фосфорилирования 6-го, не включенного в кольцо, атома углерода. Эта реакция является первой в любом превращении глюкозы, катализируется гексокиназой.

Вторая реакция необходима для выведения еще одного атома углерода из кольца для его последующего фосфорилирования (фермент изомераза). В результате образуется фруктозо-6-фосфат.

Третья реакция – фермент фосфофруктокиназафосфорилирует фруктозо-6-фосфат с образованием почти симметричной молекулы фруктозо-1,6-дифосфата. Эта реакция является главной в регуляции скорости гликолиза.

В четвертой реакции фруктозо-1,6-дифосфат разрезается пополам фруктозо-1,6-дифосфат-альдолазой с образованием двух фосфорилированных триоз-изомеров – альдозы глицеральдегида (ГАФ) и кетозы диоксиацетона(ДАФ).

Пятая реакция подготовительного этапа – переход глицеральдегидфосфата и диоксиацетонфосфата друг в друга при участии триозофосфатизомеразы. Равновесие реакции сдвинуто в пользу диоксиацетонфосфата, его доля составляет 97%, доля глицеральдегидфосфата – 3%. Эта реакция, при всей ее простоте, определяет дальнейшую судьбу глюкозы: при нехватке энергии в клетке и активации окисления глюкозы диоксиацетонфосфат превращается в глицеральдегидфосфат, который далее окисляется на втором этапе гликолиза, при достаточном количестве АТФ, наоборот, глицеральдегидфосфат изомеризуется в диоксиацетонфосфат, и последний отправляется на синтез жиров.

Второй этап гликолиза – это освобождение энергии, содержащейся в глицеральдегидфосфате, и запасание ее в форме АТФ.
Шестая реакция гликолиза (ферментглицеральдегидфосфат-дегидрогеназа) – окисление глицеральдегидфосфата и присоединение к нему фосфорной кислоты приводит к образованию макроэргического соединения 1,3-дифосфоглицериновой кислоты и НАДН.
В седьмой реакции (фермент фосфоглицераткиназа) энергия фосфоэфирной связи, заключенная в 1,3-дифосфоглицерате тратится на образование АТФ. Реакция получила дополнительное название – реакция субстратного фосфорилирования, что уточняет источник энергии для получения макроэргической связи в АТФ (от субстрата реакции) в отличие от окислительного фосфорилирования (от электрохимического градиента ионов водорода на мембране митохондрий).

Восьмая реакция – синтезированный в предыдущей реакции 3-фосфоглицерат под влияниемфосфоглицератмутазы изомеризуется в 2-фосфоглицерат.
Девятая реакция – фермент енолаза отрывает молекулу воды от 2-фосфоглицериновой кислоты и приводит к образованию макроэргической фосфоэфирной связи в составе фосфоенолпирувата.

Десятая реакция гликолиза – еще одна реакция субстратного фосфорилирования – заключается в переносе пируваткиназой макроэргического фосфата с фосфоенолпирувата на АДФ и образовании пировиноградной кислоты.

Последняя реакция бескислородного окисления глюкозы,одиннадцатая – образование молочной кислоты из пирувата под действием лактатдегидрогеназы. Важно то, что эта реакция осуществляется только ванаэробных условиях. Эта реакция необходима клетке, так как НАДН, образующийся в 6-й реакции, в отсутствие кислорода не может окисляться в митохондриях.

Энергетический баланс анаэробного гликолиза составляет на одну молекулу окисленной глюкозы две молекулы АТФ, а гликогенолиза — три молекулы АТФ, образовавщихся в реакциях субстратного фосфорилирования Известно, что концевая макроэргическая связь АТФ способна аккумулировать примерно 31,0 кДж/моль свободной энергии. Учитывая, что образуется две молекулы АТФ (62,0 кДж/моль), энергетическая эффективностьанаэробного гликолиза составляет примерно 32%. Поскольку при гликогенолизе на образование глюкозо-6-фосфата АТФ не затрачивается, образуется не две, а три молекулы АТФ в расчете на однумолекулу окисленной  глюкозы. Энергетический баланс гликолиза в случае, когда исходным веществом служит глюкоза, составляет 2 моля АТФ на 1 моль расщепляемых углеводов.

Гликогенолиз - это распад гликогена , запасного полисахарида. Гликогенолиз происходит непрерывно, и за счет этого поддерживается постоянная концентрация глюкозы в крови в промежутках между приемами пищи. Во время ночного голодания около 75% глюкозы печеночного происхождения образуется путем гликогенолиза. 25% глюкозы печеночного происхождения образуется путем глюконеогенеза.

Расщепление гликогена включает несколько этапов. Сначала фосфорилаза последовательно отщепляет остатки глюкозы от концов боковых цепей гликогена При этом фосфорилируются альфа-1,4-связи и образуются молекулы глюкозо-1-фосфата . Фосфорилаза атакует боковую цепь до тех пор, пока не дойдет до точки, отстоящей на 4 остатка глюкозы от места ветвления (т. е. от альфа-1,6-связи). Затем вступает в действие система отщепления боковых цепей гликогена. Первый фермент этой системы - 4-альфа-D-глюканотрансфераза - отщепляет 3 из 4 остатков глюкозы и переносит их на свободный конец другой боковой цепи. Второй фермент - амило-1,6-глюкозидаза - отщепляет от главной цепи четвертый остаток глюкозы. После этого главная цепь гликогена становится доступной для фосфорилазы. В реакции, катализируемой амило-1,6-глюкозидазой, образуется глюкоза.

Большинство типов брожения осуществляют микроорганизмы — облигатные или факультативные анаэробы. Броже́ние — процесс анаэробного расщепления органических веществ, преимущественно углеводов, происходящий под влиянием микроорганизмов или выделенных из них ферментов. Биохимический процесс, вызываемый микроорганизмами и приводящий к распадению органических веществ.Кваше́ние —разновидность молочнокислого брожения, в процессе которого образуется молочная кислота, оказывающая на продукты (наряду с добавляемой поваренной солью) консервирующее действие и размягчающее. Применяется при консервировании овощей и в кожевенном
 
производстве. Фермента́ция — биохимическая переработка сырья под воздействием ферментов, содержащихся в нем самом (чайного листа, листьев табака), а также вызываемая микроорганизмами. Именно ферментация используется в процессе изготовления черного чая, табака для курения, какао порошка, иван-чая и др.

Пировиноградная кислота — химическое соединение с формулой СН3СОСООН, органическая кетокислота.
В условиях достаточного поступления кислорода пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций, известных как цикл Кребса, или дыхательный цикл, цикл трикарбоновых кислот. Пируват также может быть превращён в анаплеротической реакции в оксалоацетат.Оксалоацетат затем окисляется до углекислого газа и воды. Если кислорода недостаточно, пировиноградная кислота подвергается анаэробному расщеплению с образованием молочной кислоты у животных и этанола у растений. При анаэробном дыхании в клетках пируват, полученный при гликолизе, преобразуется в лактат при помощи фермента лактатдегидрогеназы и NADP в процессе лактатной ферментации, либо в ацетальдегид и затем в этанол в процессе алкогольной ферментации.

Пировиноградная кислота является «точкой пересечения» многих метаболических путей. Пируват может быть превращён обратно в глюкозу в процессе глюконеогенеза, или в жирные кислоты или энергию через ацетил-КоА, в аминокислоту аланин, или в этанол. Таким образом пируват объединяет несколько ключевых метаболических процессов клетки и является универсальной «метаболической валютой» живой клетки.

По ферментативной деятельности молочнокислые бактерии разделяют на гомоферментативные, т. е. сбраживающие сахар до молочной кислоты, и гетероферментативные, образующие кроме молочной кислоты уксусную кислоту, этиловый спирт и углекислый газ.

Согласно современным представлениям, гомо- и гетероферментативные молочнокислые палочки отличаются по механизму расщепления углеводов. Гомоферментативные виды содержат фермент альдолазу, но лишены пентозофосфокетолазы. В связи с этим молочнокислое брожение у них протекает как гликолиз. У гетероферментативных культур, наоборот, нет альдолазы и триозофосфатизомеразы, но есть пентозофосфокетолаза, поэтому расщепление углеводов здесь происходит исключительно по пентозофосфатному пути. В ходе гомофермен-тативного молочнокислого брожения образуется до 85-95% молочной кислоты. При гетероферментативном процессе выход молочной кислоты составляет около 60-70%.

Спиртовое и молочнокислое брожение - основные источники обеспечения энергией некоторых микроорганизмов в анаэробных условиях.
Спиртовое брожение осуществляется так называемыми дрожжеподобными организмами, а также некоторыми плесневыми грибками. Суммарную реакцию спиртового брожения можно изобразить следующим образом:
С&Н1206->2С2Н50Н + 2С03
Глюкоза    Этанол
Механизм процесса спиртового брожения чрезвычайно близок к гликолизу. Расхождение начинается лишь после этапа образования пирувата. При гликолизе пируват при участии фермента ЛДГ и кофермента NADH восстанавливается в лактат. При спиртовом брожении этот конечный этап заменен двумя другими ферментативными реакциями: пируватдекарбоксилазной и алкогольдегидрогеназной. В дрожжевых клетках (спиртовое брожение) пируват вначале подвер¬гается декарбоксилированию, в результате чего образуется ацетальдегид. Данная необратимая реакция катализируется ферментом пируватдекарбокси- лазой, который требует наличия ионов Mg2+ и кофермента (TРP):

Образовавшийся ацетальдегид присоединяет к себе водород, отщеп¬ляемый от NADH, восстанавливаясь при этом в этанол. Реакция катализиру¬ется ферментом алкогольдегидрогеназой:
 
Процесс молочнокислого брожения имеет большое сходство со спиртовым брожением. Отличие заключается лишь в том, что при молочнокислом брожении пировиноградная кислота не декарбоксилируется, а, как и при гликолизе в животных тканях, восстанавливается при участии ЛДГ за счет водорода NADH. Известны две группы молочнокислых бактерий. Бактерии одной группы в процессе брожения углеводов образуют только молочную кислоту, а бактерии другой из каждой молекулы глюкозы «производят» по одной молекуле молочной кислоты, этанола и СО2 Виды, осуществляющие брожение, играют важную роль в природном круговороте веществ. Большая часть целлюлозы, поедаемой растительноядными животными, выводится в непереваренном виде с калом. Когда этот содержащий целлюлозу детрит попадает в анаэробные слои почвы или донных осадков водоемов, целлюлозу сбраживают разлагающие ее клостридии и некоторые другие строго анаэробные бактерии. При этом образуются названные выше продукты брожения, в том числе почти всегда молекулярный водород. Водород находится в начале анаэробной пищевой цепи, главные продукты которой метан и (или) сероводород:

В осадках пресноводных озер и в рубце жвачных Н2 превращается метанобразующими бактериями в метан, а в морских анаэробных экосистемах сульфатредуцирующие бактерии превращают Н2 и сульфат в сероводород.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх