Аноксигенный фотосинтез— вариант фотосинтеза (процесса образования органических веществ на свету), при котором не происходит синтеза молекулярного кислорода; используется анаэробными фототрофными бактериями. В аноксигенном фотосинтезе участвует только одна световая реакция; она поддерживает циклический транспорт электронов. Электроны, покидающие цикл для восстановления NAD, не являются продуктом разло­жения воды. Фотосинтез зависит от наличия в среде восстановленных субстратов и не сопровождается выделением 02. Собственно фотореакция хотя и аналогична первой фотореакции у зеленых растений, однако у некоторых бактерий она приводит, вероятно, лишь к созданию протонного потенциала и тем самым к запасанию энергии (АТР), но не к восстановлению NAD. Таким образом, нециклический перенос электронов (от донора электронов к пиридиннуклеотиду) здесь отсутствует. По-видимому, NADH2образуется в результате какой-то темновой реакции в ходе обратного транспорта электронов, протекающего с затратой энергии.

У фототрофных бактерий между отдельными группами существуют гораздо большие различия в составе пигментов и механизмах фотосинтеза, чем у зеленых растений. Фотосинтетическим пигментом является, в отличие от оксигенного фотосинтеза у растений, не хлорофилл, а бактериохлорофилл. Осуществляется пурпурными и зелёными бактериями, а также геликобактериями.

Фотореакция у пурпурных бактерий.  У пурпурных бактерий пигменты и компоненты электрон-транспортной системы находятся в мембранах. Пигментный комплекс фотохимического реакционного центра удается отделить от пигментов антенны.

Энергия, поглощенная пигментами антенны (бактериохлорофиллом и каротиноидами) передается реакционным центрам. Изолированные реакционные центры состоят из белкового комплекса, содержащего Бхл а, бактериофеофитин, каротиноиды, убихинон и железосерный белок (FeS-белок). Пигмент реакционного центра обозначают Р870~по длине волны, при которой максимально снижается поглощение под действием света. На свету Р870 окисляется в Р870+. Окислительно-восстановительный потенциал этого донора электронов лежит между + 450 и + 490 мВ. Первичным акцептором электронов, вероятно, служит комплекс убихинона с FeS-белком. Окислительно-восстановительный потенциал этого комплекса должен быть близок к -100 мВ. Поэтому кажется маловероятным, что электроны, возбуждаемые при световой реакции у пурпурных бактерий, способны восстанавливать NAD. Скорее, они возвращаются через убихинон, цитохромы и, возможно, FeS-белки назад к Р870 +. Необходимые же для восстановления NAD электроны, видимо, покидают путь циклического транспорта. Они переносятся на NAD в результате обратного транспорта, протекающего с затратой АТР. Для пополнения цикла электронами пурпурные бактерии нуждаются во внешних донорах электронов. Пурпурные серобактерии могут использовать с этой целью сероводород, серу или тиосульфат; органические соединения (малат, сукцинат и др.) и молекулярный водород служат донорами электронов для обеих групп пурпурных бактерий.

Фотореакция у зеленых бактерий. Механизмы фотореакции у зеленых бактерий еще не полностью выяснены. Есть указания на то, что первичный акцептор электронов, участвующий в световой реакции, у зеленых серобактерий обладает потенциалом около - 500 мВ (у пурпурных бактерий - всего лишь - 100 мВ!). При столь большом отрицательном потенциале становится возможным прямое использование электронов от первичного акцептора для восстановления ферредоксина и пиридиннуклеотида. Таким образом, восстановительную силу Chlorobiaceae, возможно, получают не путем обратного транспорта электронов, требующего затрат энергии. Такая независимость от обратного транспорта электронов была бы важной отличительной чертой фотосинтеза у зеленых бактерий по сравнению с пурпурными.

В процессе фотосинтеза происходит превращение энергии света в биохимическую энергию. Первичное действие света состоит в том, что в фотохимических реакционных центрах электроны донора переносятся на акцептор в термодинамически невыгодном направлении. По крайней мере часть электронов возвращается по электрон-транспортной цепи к реакционным центрам. Благодаря особому расположению компонентов электрон-транспортной системы в мембране это сопровождается направленным Переносом протонов и созданием протонного потенциала. Таким образом, аппарат фотосинтеза - это прежде всего протонный насос, приводимый в действие светом. Протонный потенциал обеспечивает возможность преобразования энергии путем фосфорилирования.

Синтез АТР происходит с помощью тех же в своей основе механизмов, что и в мембранах аэробных бактерий или митохондрий. Что же касается преобразования энергии света в биохимически полезную энергию (АТР), то здесь нет принципиального различия между фототрофными бактериями и зелеными растениями. У пурпурных бактерий роль фотосинтеза, по-видимому, исчерпывается этим преобразованием. У цианобактерий и зеленых растений можно видеть дальнейший этап эволюции фотосинтеза. У них благодаря последовательному включению двух фотореакций энергетический уровень электронов в ходе первой реакции удается поднять настолько, что становится возможным восстановление ферредоксина и NADP. Вторая фото­реакция позволяет использовать в качестве источника электронов воду. В результате такой комбинации наряду с запасанием энергии происхо­дит восстановление NADP и выделение 02.

© 2015-2019 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

Заказать курсовую скидка 15%

^ Наверх