Первичные процессы фотосинтеза протекают в тилакоидах - плоских замкнутых мембранных пузырьках, содержащихся в клетках цианобактерий и в хлоропластах водорослей и высших растений.

Тилакоидные мембраны и светособирающие пигменты (пигменты антенн). Тилакоидная мембрана содержит в себе пигментные молекулы (хлорофилл а, хлорофилл Ъ и каротиноиды), переносчики электронов и ферменты. Подавляющее большинство молекул хлорофилла (99,5%), а также дополнительные пигменты (каротиноиды, фикобили-протеины) ответственны за поглощение света и распределение энергии; они образуют систему антенны. Лишь незначительная часть хлорофилла а выполняет роль фотохимического реакционного центра, в котором протекает собственно фотохимическая окислительно-восстановительная реакция. Пигменты антенн (светособирающие пигменты) улавливают свет и передают энергию хлорофиллу реакционного центра (Каротиноид -> Каротиноид*; Хлорофилл + Каротиноид* -> Хлорофилл* + Каротиноид). Каротиноиды выполняют также защитную функцию: при очень ярком солнечном освещении они отдают избыточную энергию в окружающую среду и тем самым защищают молекулы хлорофилла от фотоокисления. Система светособирающих пигментов и реакционный центр объединены в так называемую фотосинтетическую единицу.

Фотореакции относятся к первичным процессам любого фотосинтеза. Местом, где протекают эти фотохимические окислительно-восстановительные реакции, являются реакционные центры. Реакционный центр состоит из ряда компонентов, наиболее важные из которых:

  • первичный донор электронов (особый комплекс из хлорофилла и белка),
  • первичный акцептор электронов.

Эти два компонента представляют собой окислительно-восстановительные системы. Система донора (Р/Р+) обладает положительным, а система акцептора (Х/Х ~)- отрицательным потенциалом. Под воздействием энергии света происходит перенос одного электрона:

Восстановленныи донор + Окисленный акцептор hv -» Окисленный донор + Восстановленный акцептор.

В результате фотореакции донор теряет один электрон - возникает «дырка» (электронный дефект). Такие «дырки» должны заполняться электронами, которые могут поступать сюда по одному из двух путей-по пути нециклического или циклического переноса электронов. При нециклическом переносе электроны поступают от экзогенного внешнего донора: в случае второй фотореакции-от молекул воды, в случае первой реакции-из электрон-транспортной цепи, связывающей обе фотосистемы между собой. При циклическом переносе электроны возвращаются от восстановленного акцептора (X ~) к окисленному донору. Фотохимическая окислительно-восстановительная реакция, в ходе которой Р окисляется, а X восстанавливается, представлена на следующей схеме:

Циклический перенос электронов приводит к изменению заряда мембраны, а нециклический перенос-кроме того, и к восстановлению NADP.

При оксигенном фотосинтезе работают две пигментные системы, включенные последовательно. Пигментную систему, возбуждаемую более длинноволновым светом (к < 730 нм), называют фотосистемой I, а возбуждаемую более коротковолновым светом (X < < 700 нм) - фотосистемой II.

Фотохимически активный реакционный центр фотосистемы I содержит Хлонрофилл а (Р700), играющий роль первичного донора электронов в первой фотореакции. Световая энергия, поглощаемая светособирающими пигментами фотосистемы I, передается в реакционный центр и переводит в возбужденное состояние Хлорофилл а. Это приводит к его окислению, т.е. к отдаче им одного электрона. Другими словами, в результате отдачи электрона в реакционном центре образуется «дырка», или «электронная вакансия». Эта «дырка» тотчас же заполняется другим электроном, поступающим по специальному электрон-транспортному пути. Акцептором отданного электрона, по-видимому, служит железосерный белок («X»). Он обладает еще более отрицательным окислительно-восстановительным потенциалом, чем - 420 мВ, возможно - 530 мВ. Этот акцептор в свою очередь отдает электрон ферредоксину, а с восстановленного ферредоксина восстановительная сила может передаваться на NADP или другие акцепторы. Наряду с этим возможен и циклический перенос электрона, при котором электрон от «X» передается через пластохинон, цитохромы и пластоцианин обратно к хлорофиллу а реакционного центра.

Реакционный центр фотосистемы II содержит Хл. ац (Р680), который служит первичным донором электронов во второй фотореакции. Получив энергию, поглощенную светособирающими пигментами фотосистемы II, этот хлорофилл переходит в возбужденное состояние. Возбуждение Хл а ведет к эмиссии одного электрона, являющегося слабым восстановителем (Е'0 ~ О В). Этот электрон принимает молекула особого пластохинона (Х320), который при этом восстанавливается до семи-хинона. Донором электронов для фотосистемы II служит вода. «Дырка», образовавшаяся в Хл а в результате потери электрона, заполняется одним из электронов, освобождающихся при образовании 02 из воды (2Н20 -> 02 + 4Н + + 4е ~). Разложение воды происходит при участии марганца.

© 2015-2019 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх