Генетическая инженерия является сердцевиной биотехнологии. Она по существу сводится к генетической рекомбинации, т.е. обмену генами между двумя хромосомами, которая приводит к возникновению клеток или организмов с двумя и более наследственными детерминантами (генами), по которым родители различались между собой. Метод рекомбинации in vitro или генетической инженерии заключается в выделении или синтезе ДНК из отличающихся друг от друга организмов или клеток, получении гибридных молекул ДНК, введении рекомбинантных (гибридных) молекул в живые клетки, создании условий для экспрессии и секреции продуктов, кодируемых генами.
Гены, кодирующие те или иные структуры, или выделяют (клонируют) как таковые (хромосомы, плазмиды), или прицельно выщепляют из этих генетических образований с помощью ферментов рестрикции. Эти ферменты, а их уже известно более тысячи, способны резать ДНК по многим определенным связям, что является важным инструментом генной инженерии.
В последнее время обнаружены ферменты, расщепляющие по определенным связям РНК, наподобие рестриктаз ДНК. Эти ферменты названы рибозимами.
Сравнительно небольшие гены могут быть получены с помощью химического синтеза. Для этого вначале расшифровывают число и последовательность аминокислот в белковой молекуле вещества, а затем по этим данным узнают очередность нуклеотидов в гене, поскольку каждой аминокислоте соответствуют три нуклеотида (кодон). С помощью синтезатора создают химическим путем ген, аналогичный природному гену.
Полученный одним из способов целевой ген с помощью ферментов лигаз сшивают с другим геном, который используется в качестве вектора, для встраивания гибридного гена в клетку. Вектором могут служить плазмиды, бактериофаги, вирусы человека, животных и растений.
Экспрессируемый ген в виде рекомбинатной ДНК (плазмида, фаг, вирусная ДНК) встраивается в бактериальную или животную клетку, которая приобретает новое свойство - продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном.
В качестве реципиентов экспрессируемого гена чаще всего используют E. coli, B. subtilis, псевдомонады, нетифоидные серовары сальмонелл, дрожжи, вирусы.
Методом генной инженерии созданы сотни препаратов медицинского и ветеринарного назначения, получены рекомбинантные штаммы-суперпродуценты, многие из которых нашли практическое применение. Уже используются в медицине полученные методом генной инженерии вакцины против гепатита В, интерлейкины-1, 2, 3, 6, инсулин, гормоны роста, интерфероны α, β, γ, фактор некроза опухолей, пептиды тимуса, миелопептиды, тканевый активатор плазминогена, эритропоэтин, антигены ВИЧ, фактор свертывания крови, моноклональные антитела и многие антигены для диагностических целей.
Развитие молекулярной генетики явилось мощным стимулом для исследований, посвященных изучению молекулярно-генетических основ патогенности и иммуногенности микроорганизмов, механизмов образования новых биологических вариантов патогенных и условно-патогенных микроорганизмов, распространением антибиотико-резистентных штаммов на фоне расширяющегося арсенала химиотерапевтических средств. Последние, являясь мощными селективными факторами, способствуют накоплению предшествующих в популяции резистентных форм бактерий и формированию лекарственно-устойчивых популяций с измененными патогенными и другими свойствами.
Вместе с тем изменения иммунологической реактивности макроорганизма в результате разнообразных воздействий факторов окружающей среды, а также всевозможных лекарственных препаратов оказывают существенное влияние на фенотипическое выражение патогенных генотипов. Все это отражается на наблюдаемых в настоящее время изменениях в патогенетических и клинических особенно инфекционных заболеваний и распространении внутрибольничных инфекций.
Достижения генной инженерии позволяют создать новые генетические элементы из нуклеотидных последовательностей, несущие заданию информацию, способы их переноса в клетки про- и эукариотов. Новые генетические элементы представляют собой рекомбинантные молекулы ДНК, которые включают два компонента: вектор-переносчик и клонированную «чужеродную» ДНК. Вектор должен обладать свойствами репликации обеспечить репликацию вновь созданной рекомбинантной молы. Поэтому в качестве вектора используют такие репликоны, как змиды, умеренные фаги, вирусы животных, имеющие циркулярную I замкнутую структуру ДНК. Клонируемая ДНК - это фрагмент ДНК, несущий необходимый ген, контролирующий синтез нужного продукта. В настоящее время разработаны различные технологические приемы создания рекомбинантных молекул. Наиболее простой принцип сводится к обработке выделенных молекул ДНК вектора и ДНК, несущей нужный ген, ферментами рестриктазами (эндонуклеазы рестрикции), атакующими взятые молекулы ДНК в строго определеном участке. Некоторые рестриктазы расщепляют молекулы ДНК бразованием однонитевых комплементарных друг другу концов, называемых «липких» концов. Таким образом, первым этапом является «разрезание» молекул ДНК с помощью эндонуклеаз рестрикции. Второй этап состоит в обработке полученных линейных молекул ферментом полинуклеотидлигазой, которая «сшивает» две разные молекулы в одну рекомбинантную, третий - во введении рекомбинантных молекул методом трансформации в клетки Е. coli или других микроорганизмов, например, дрожжей.