Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).

У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.

Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой. Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

РНК принадлежит главная роль в передаче и реализации наследственной информации. В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.

Существует три основных класса клеточных РНК.

  1. Информационная (иРНК), или матричная (мРНК). Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 0,05х106 до 4х106) и стабильности. Составляют около 2% от общего количества РНК в клетке. Все иРНК являются переносчиками генетической информации из ядра в цитоплазму, к месту синтеза белка. Они служат матрицей (рабочим чертежом) для синтеза молекулы белка, так как определяют аминокислотную последовательность (первичную структуру) белковой молекулы.

 Структура молекулы иРНК

  1. Рибосомальные РНК (рРНК). Составляют 80–85% от общего содержания РНК в клетке. Рибосомальная РНК состоит из 3–5 тыс. нуклеотидов. Она синтезируется в ядрышках ядра. В комплексе с рибосомными белками рРНК образует рибосомы – органоиды, на которых происходит сборка белковых молекул. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.
  2. Транспортные РНК (тРНК). Молекулы тРНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК около 25 тыс. Молекулы тРНК играют роль посредников в биосинтезе белка – они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме клеверный лист.

Вторичная структура РНК – характерна для тРНК, одноцепочечная, по форме напоминает «клеверный лист». Включает:

  • сравнительно короткие двойные спирали – стебли,
  • однотяжевые участки – петли.

Имеется 4 стебля (акцепторный, антикодоновый, дигидроуридиловый, псевдоуридиловый) и 3 петли.

«Стебель-петля» — элемент вторичной структуры РНК, схематично

«Стебель-петля» — элемент вторичной структуры РНК, схематично

«Псевдоузел» — элемент вторичной структуры РНК, схематично

Акцепторный стебель 

Акцепторный стебель – содержит 3’- и 5’- концы полинуклеотидной цепи, 5’-конец заканчивается остатком гуаниловой кислоты, 3’-конец – триплетом ЦЦА и служит для образования сложноэфирной связи с АК.

Антикодоновый стебель узнает свой кодон на и-РНК в рибосомах по принципу комплементарности.

Псевдоуридиловый стебель служит для прикрепления к рибосоме.

Дигидроуридиловый стебель служит для связи с аминоацил-тРНК-синтетазой.

© 2015-2019 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх