Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Кроме синтеза белков индивидуальное развитие включает размножение клеток, а также и размножение самих организмов. Для этого необходим механизм воспроизведения генетической информации. Копирование гене­тической программы осуществляется посредством репликации ДНК в цикле деления клетки. Это вторая функция генов.

Репликация (от лат. Replicatio – повторение) означает процесс матричного аутосинтеза молекулы ДНК, ведущий к ее удвоению, самовоспроизведению. Как и в случае транскрипции, молекула ДНК разделяется на две нити и достраивается свободными нуклеотидами, но не по одной цепи, а сразу по обеим. Подбор нуклеотидов идет по принципу комплементарности: аденин – тимин, гуанин – цитозин. Новые цепи не удаляются со своих матриц, как это происходит с РНК при транскрипции, а остаются на них, удерживаемые водородными связями. В результате образуются две молекулы ДНК, каждая из которых содержит одну старую и одну новую цепи нуклеотидов. Дочерние молекулы ДНК идентичны друг другу и в то же время повторяют материнскую молекулу. На рис. видно, как в репликативной вилке пара А-Т воспроизводится в две такие же А-Т пары, а пара Г-Ц, соответственно, в две Г-Ц пары.

Цикл деления и дифференцировка клеток

Цикл деления и дифференцировка клеток

Когда в 1953 г. Уотсон и Крик показали возможность самокопирования ДНК по принципу комплементарности, научная общественность была в шоке: настолько неожиданно прост и надежен оказался механизм наследственности! Не столько структура ДНК, сколько вытекающий из нее механизм самокопирования представлял наибольший интерес в их открытии.

Ядерная ДНК находится в составе хромосом, она связана с большим количеством вспомогательных белков, способствующих ее правильной упаковке. Во время деления клетки эти структуры максимально спирализованы. Число хромосом (как и их размеры, форма) специфично для каждого вида животных или растений (хромосомный набор, или кариотип вида). В половых клетках содержится минимальный, одинарный, или гаплоидный, набор хромосом, включающий один комплект генов, т.е. один геном, его обозначают латинским символом “n”. Начиная от зиготы, полученной от слияния мужской (1n) и женской (1n) половых клеток, во всех поколениях соматических клеток воспроизводится двойной, или диплоидный, набор хромосом – 2n. Так, у человека в обычной соматической клетке содержится 46 хромосом – 23 хромосомы от матери и 23 такие же от отца (только по 23-й паре есть различия хромосом женского и мужского организмов).

Из сказанного следует важный вывод: каждый признак, то есть каждый белок, закодирован в клетке (и организме) не одним, а двумя генами, от двух гомологичных (одноименных) хромосом. Такие пары генов, отвечающих за один и тот же признак, называют аллельными генами, или просто аллелями. О преимуществах дублирования генов мы еще вспомним при рассмотрении

Во время интерфазы, между делениями, происходит репликация ДНК, в результате чего в каждой хромосоме ДНК удваивается. В ходе деления клетки (оно называется митозом) ядерная оболочка разрушается, хромосомы спирализуются, продольно расщепляются и симметрично расходятся к полюсам клетки. Следом происходит деление самой клетк В результате митоза в дочерних клетках воспроизводится исходный диплоидный набор хромосом 2n, поэтому каждая новая клетка обладает той же информацией о белках, что и материнская клетка.

Понятно, что размножаются только клетки с полноценным ядерным (хромосомным) аппаратом. Также исключена всякая самосборка клеток из неклеточного вещества, например, из желтка или белка в развивающемся яйце, из плазмы крови или других биологических жидкостей. Такие идеи предлагались еще на заре клеточной теории (Шлейден, 1838), но в 1855 году немецкий ученый Рудольф Вирхов “не оставил камня на камне” от такой теории, доказав на большом научном материале, что новые клетки возникают только от таких же клеток в результате их деления.

Деление клеток приводит к увеличению их числа. В крупных организмах насчитываются миллионы, миллиарды и триллионы клеток. Тело человека, например, образовано сотнями триллионов (1014) или даже квадриллионом (1015) клеток. В многоклеточном организме происходит дифференцировка клеток – появление структурно-функциональных различий между ними и формирование специализированных тканей.

© 2015-2020 vseobiology.ru | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх