Если мой сайт помог вам в подготовке к экзаменам вы можете отправить ссылку своим друзьям биологам.  Это сделает ресурс лучше!

Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Структура всех митохондрий похожа, и функция их неизменно одна и та же – это энергетические станции клетки. Именно в митохондриях происходит такой процесс, как клеточное дыхание. Именно во внутреннем пространстве митохондрий имеет место цикл Кребса, в ходе которого расходуется пируват, выделяется углекислый газ, производится часть АТФ и восстанавливается кофермент НАД+. И именно во внутренней мембране митохондрий располагается цепь переноса электронов, происходит окисление НАД-H и синтезируется остальная АТФ.

Структура и функции пластид более разнообразны. Различают так называемые:

  • пропластиды – мелкие нефункциональные ювенильные пластиды, из которых развиваются другие типы пластид;
  • лейкопласты – бесцветные пластиды, участвующие в синтезе жиров;
  • амилопласты – пластиды, запасающие крахмал; в конечном счете они превращаются вкрахмальные зерна, в каких, например, запасен крахмал у картофеля; 
  • хромопласты – пластиды, наполненные пигментами каротиноидами; их можно найти, к примеру, в плодах рябины.
  • хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез, как световая, так и темновая его фазы.

Основной структурной особенностью хлоропластов являются граны – стопки тилакоидов. Таким образом, хлоропласты имеют наиболее развитую внутреннюю мембранную структуру, так как в мембране хлоропластов располагаются и фотосистемы, и фермент рибулозофосфаткарбоксилаза.

И митохондрии, и большинство пластид являются овальными или цилиндрическими структурами.

Однако многие неродственные друг другу водоросли имеют единственный хлоропласт на клетку, он может иметь самую необычную форму. Встречаются и митохондрии с преобразованной структурой –одна спирально закрученная митохондрия имеется в шейке сперматозоида, т. е. она обвивает основание его жгутика.

Самой потрясающей общей особенностью митохондрий и пластид является то, что они имеют свою, независимую от ядра, генетическую систему. И эта генетическая система очень похожа на генетическую систему прокариот. В ее состав входит прежде всего собственная, соответственно митохондриальная или пластидная ДНК. У митохондрий, как и у бактерий, ДНК имеет кольцевую структуру (лишь у некоторых простейших – линейную). ДНК пластид организована в сложные букетоподобные структуры, состоящие из частично спаренных друг с другом кольцевых и линейных фрагментов, но исходной структурной единицей ее также является элементарная кольцевая ДНК.

ДНК пластид и митохондрий не имеет характерной хроматиновой упаковки, здесь нет нуклеосом и гистонов, вообще здесь гораздо меньше белков. Иначе говоря, все устроено как у прокариот. Промоторы и терминаторы также бактериального типа. Далее, в пластидах и митохондриях имеются рибосомы, причем рибосомы именно прокариотического типа. Как и у прокариот, при трансляции синтез полипептидной цепи начинается с аминокислоты формилметионина. У пластид к прокариотическому типу принадлежат также и свои тРНК, РНК-полимеразы, регуляторные последовательности.

Впрочем, некоторые гены как пластид, так и митохондрий содержат интроны, подобно ядерным генам эукариот и в отличие от генов бактерий. Поэтому считываемая с них во время транскрипции РНК должна быть подвергнута сплайсингу. Возможно, эти гены «заразились» интронами от ядерного генома.

Все эти факты относительной автономии пластид и митохондрий и их глубинного сходства с прокариотами, которое не может быть случайным, свидетельствуют об одном – пластиды и митохондрии на самом деле неродственны эукариотической клетке. Они произошли от каких-то прокариот, которые когда-то поселились внутри эукариотической клетки. Считается, что это были эндосимбионты – организмы, которые живут внутри других организмов и находятся с ними в отношениях симбиоза – взаимной выгоды. Таковы, например, зеленые водоросли, живущие внутри кораллов и некоторых плоских червей.

Митохондрии произошли от каких-то аэробных (способных к дыханию кислородом) бактерий, к каковым относится большинство современных бактерий. Аэробные бактерии, в свою очередь, произошли от фотосинтезирующих бактерий, утративших фотосинтез. Об этом говорит поразительное сходство цепи переноса электронов в системе клеточного дыхания и при фотосинтезе. Предполагают, что митохондрии произошли именно от каких-то пурпурных бактерий, утративших способность к фотосинтезу. Это произошло около 1-1,5 млрд лет назад, когда в атмосфере впервые появился в достаточных концентрациях свободный кислород, наработанный цианобактериями (сине-зелеными водорослями), господствовавшими в то время на мелководьях.

Предками пластид наверняка были какие-то цианобактерии (сине-зеленые водоросли), об этом говорит сходный набор пигментов и те же самые две сопряженные фотосистемы. Причем хлоропласты красных водорослей, динофлагеллят + бурых + золотистых водорослей и зеленых водорослей + зеленых растений происходили от разных прокариот и были «одомашнены» независимо. Хлоропласты красных водорослей по составу пигментов прямо соответствуют цианобактериям. Открыты и свободноживущие и симбиотические бактерии, по составу пигментов соответствующие двум другим типам хлоропластов (бактерия Prochloron с хлорофиллами a и b, как у зеленых водорослей и растений, является симбионтом оболочников).

Приобретя митохондрии, эукариоты обзавелись мощными энергетическими станциями, которые намного повысили энергообеспеченность клетки. А приобретя пластиды, часть эукариотических клеток получила возможность к автотрофии и стала тем, что мы называем растениями.

Пластиды и митохондрии давно утратили свою автономность. Большая часть белков, функционирующих в этих органеллах, кодируется генами, находящимися в ядре. У пластид даже часть рибосомальных РНК и белков, часть субъединиц РНК-полимеразы и целиком белки репликации – все прокариотического типа – кодируются в ядре. Судя по всему, в ходе эволюции шел непрерывный процесс экспроприации генов ядром из органелл, перенесения их из органелльного генома в хромосомы.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015-2020 © Биология для студентов | При использовании материалов сайта - прямая ссылка на vseobiology.ru обязательна.

^ Наверх