Vinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.xVinaora Nivo Slider 3.x

Нобелевскую премию по химии в 2018 году разделили между собой трое ученых: половина премии досталась американской исследовательнице Фрэнсис Арнольд «за направленную эволюцию ферментов», вторую половину поровну поделили американец Джордж Смит и Грег Уинтер из Великобритании — «за фаговый дисплей пептидов и антител».

Исследования, которые удостоились премии, имеют ярко выраженный прикладной характер, а объединяет их то, что все авторы связаны с разработкой методов для получения полезных для человека белков и пептидов, основанных на имитации естественного «метода» биологической эволюции, а именно — на сочетании случайной изменчивости и неслучайного отбора. Все лауреаты имеют за плечами долгий путь исследовательской работы и множество престижных наград и премий.

Белки (также называемые полипептидами) — это наиважнейший класс биополимеров. Каждый полипептид представляет собой цепочку из соединенных одна за другой аминокислот, количество которых может быть очень разным, от нескольких штук до нескольких сотен, а иногда их может быть даже больше тысячи. Короткие цепочки (менее сотни аминокислот) обычно называют не белками, а пептидами: разница здесь скорее количественная, чем качественная. В природе белки строятся в основном из двадцати разновидностей аминокислот. Полипептидные цепочки далее сворачиваются определенным образом, приобретая разнообразные пространственные конфигурации, превращаясь во что-то вроде деталек конструктора.

 

Примеры белковых молекул, показаны модели их трехмерной конфигурации

Рисунок из статьи L.L. Porter, G.D. Rose, 2012

Важность белков для живой природы невозможно переоценить. Во-первых, белки — это строительные блоки, из которых выстроены и сами живые клетки, и остов межклеточного вещества, к которому клетки прикрепляются. Можно наглядно убедиться, что если взять, к примеру, сердце и удалить из него все клетки (эта процедура называется децеллюляризацией), то белковый остов, который при этом останется, полностью сохранит форму полноценного органа.

Во-вторых, значительная часть белков — ферменты, то есть они являются биологическими катализаторами, которые имеют ряд важных отличительных свойств и преимуществ по сравнению с обычными химическими катализаторами небелковой природы. А именно — необычайно высокую эффективность, специфичность к конкретному типу субстрата и регулируемость: фермент под воздействием определенных внешних факторов или посредством взаимодействия с ним другого белка может переходить из активной формы в неактивную, и наоборот.

В-третьих, некоторые белки — антитела — служат в качестве нанооружия против вражеских агентов (бактерий, вирусов или токсинов), попадающих в организм из внешней среды, выполняя, таким образом, защитную функцию. Это обеспечивается благодаря способности антител прочно связываться с самыми разными молекулами-антигенами.

А еще есть белки-рецепторы, позволяющие живым клеткам воспринимать сигналы (химические или физические) из внешней среды, а также белки-регуляторы, которые управляют реакциями клеток на полученные сигналы, в частности, осуществляя активацию или инактивацию определенных ферментов (белкам-рецепторам и регуляторам посвящена другая нобелевская премия этого года — по физиологии и медицине,

Нет ничего удивительного в том, что люди видят перспективы в приручении этих замечательных молекул для решения широкого круга задач, выходящих за рамки сугубо естественных процессов. Авторы хотели бы создавать новые виды катализаторов, не изобретенных самой природой, а также белки и пептиды, которые бы эффективно связывали любой вид молекул, который нас интересует.

Чтобы получать новые белки с заданными свойствами, их, по идее, нужно сначала изобрести. Свойства белков зависят от пространственной конформации белковой молекулы, а также от распределения в молекуле электрических зарядов. Эти характеристики, в свою очередь, определяются свойствами аминокислот, из которых построен белок. Причем важно не только, какие аминокислоты и в каком количестве входят в цепочку, но и в каком порядке они расположены. Теоретически, зная свойства аминокислот и строение полипептидной цепочки, можно было бы предсказывать конфигурацию и химические свойства конечного белка. А раз так, то почему бы не изобретать белки под свои цели точно так же, как инженеры изобретают всевозможные технические устройства — от шариковых ручек до компьютеров? Увы, не все так просто. Дело в том, что зачастую для одной и той же цепочки аминокислот существует несколько возможных устойчивых конфигураций, а кроме того, в момент взаимодействия с другими молекулами в реакционной смеси конфигурация может меняться из-за перераспределения зарядов в молекуле. Все это крайне затрудняет возможности «рационального дизайна» новых необходимых белков и пептидов.

Выход из этого затруднения есть, и он изобретен миллиарды лет назад самой природой — это метод проб и ошибок: генерирование случайного разнообразия с последующим отбором продуктов, обладающих нужными свойствами. Это и есть, по сути, «метод» природной эволюции белков, и именно за приручение принципа дарвиновской эволюции в целях лабораторной белковой инженерии и была вручена в этом году нобелевская премия по химии.

Необходимость применения метода случайного поиска говорит нам о том, как мало мы еще знаем и насколько слабы наши предсказательные возможности. Но по мере того, как накапливаются знания, приобретенные методом проб и ошибок, мы все же двигаемся в сторону повышения разрешения картинки, по которой мы судим об окружающем мире.

Давайте вместе сделаем данный сайт лучше! Поделитесь ссылкой на этот сайт со своими одногрупниками. Это поможет развитию нашего сайта.

2015 - 2021 © Биология для студентов | При использовании материалов сайта - прямая ссылка на VseoBiology.ru обязательна.

^ Наверх