Дифференцировка стволовых клеток, то есть их превращение в тот или иной клеточный тип, — это сложный многоступенчатый процесс. По пути в конечное состояние клетка проходит ряд промежуточных стадий. Существует два подхода к дифференцировке клеток in vitro.
Можно последовательно воспроизводить процессы, происходящие в зародыше при развитии, и постепенно вести клетку в требуемом направлении. А можно сразу экспрессировать в клетке белки, характерные для конечного состояния. Будут ли в этом случае клетки проходить все промежуточные состояния или какие-то пропустят? Или же они вообще пойдут другим путем?
Развитие зародыша от зиготы до полноценного организма можно представить в виде дороги со множеством развилок. По мере того как клетки делятся, каждая из них выбирает путь, по которому она будет двигаться дальше, то есть приобретает некоторые характерные свойства (форму, внутреннее строение и экспрессию конкретных генов). В результате множества таких последовательных «решений» клетка достигает конечного состояния — одного из клеточных типов взрослого организма со всем набором его характерных признаков. Весь этот путь клетки в целом называют дифференцировкой, а итог — дифференцированным состоянием.
В 1954 году английский биолог Конрад Уоддингтон предложил модель эпигенетического ландшафта, которая, в частности, применима и к дифференцировке стволовых клеток. Этот ландшафт выглядит как горка с параллельными разветвляющимися колеями (креодами), а клетка представляется шариком, скатывающимся по этой горке. Согласно этой модели, судьба клетки определяется раз и навсегда, и изменить ее уже не получится. Чтобы клетка оказалась вместо одного органа в другом, ей нужно перескочить в соседнюю колею, что в данной модели энергетически невыгодно.
Идеи Уоддингтона остаются актуальными до сих пор, однако эксперименты со стволовыми клетками подсказывают нам новые правила обращения с этим ландшафтом. Так, в 2006 году японским ученым Такахаси и Яманаке удалось «забросить камень обратно на гору» — вернуть клетки мыши из терминально-дифференцированного состояния на уровень эмбриональных стволовых клеток зародыша, из которых можно получить любой клеточный тип (см. K. Takahashi, S. Yamanaka, 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors). Для этого в зрелые фибробласты мыши вводили 4 ключевых транскрипционных фактора, обеспечивающих стволовое состояние. Этот процесс назвали репрограммированием клеток. Однако сам Яманака отметил невысокую эффективность этого процесса: в первых экспериментах удавалось репрограммировать лишь 0,05% клеток.
До недавнего времени были известны всего две основные методики работы со стволовыми клетками: дифференцировка и репрограммирование. Протоколы дифференцировки состояли из последовательного действия на клетки веществами, «направляющими» их в ту или иную сторону. Набор этих веществ определяли экспериментально, основываясь на реальных процессах развития. Если для дифференцировки клеток нервной системы на некоторой стадии в зародыше мыши нужна ретиноевая кислота, то и в лаборатории можно добавить ее в среду культивирования для получения нейронов. Теперь представим себе, что мы хотим получить, например, культуру нейронов человека. Можно взять его клетки кожи, репрограммировать до эмбриональных стволовых клеток, а затем дифференцировать в нейроны. Это оказывается долго и неэффективно, поэтому давно идет поиск более короткого пути.
Коротких путей обнаружилось два — прямая дифференцировка и трансдифференцировка. В ходе прямой дифференцировки предлагается получить нейроны из эмбриональных стволовых клеток без промежуточных стадий. Трансдифференцировка же предполагает получение нейронов напрямую из клеток кожи. Отметим сразу, что клеточные типы здесь даны как примеры, реально они могут быть практически любыми. Эти короткие пути осуществляются одним способом: в культуре исходных клеток (стволовых или дифференцированных) запускается экспрессия транскрипционных факторов, характерных для нужного клеточного типа (в данном случае, нейронов). Эффективность этих методов пока остается невысокой, однако оба они работают.
Авторы работали с эмбриональными стволовыми клетками мыши. Они запустили параллельно стандартный протокол последовательной дифференцировки и прямую дифференцировку в моторные нейроны спинного мозга. Чтобы отследить, на каких стадиях находятся клетки, они анализировали РНК в отдельных клетках на ранних (4–5 день) и поздних (11–12 день) стадиях дифференцировки. Затем исключали клетки, от которых получено слишком мало РНК, и те, у которых обнаруживали повышенную экспрессию митохондриальных генов, связанных со стрессом: эти клетки, возможно, развивались аномально. В оставшихся клетках вычисляли гены, экспрессия которых статистически значимо менялась в ходе дифференцировки.
При стандартном протоколе дифференцировки путь получился следующим: эмбриональные стволовые клетки — общие нейральные предшественники — клетки заднего отдела нервной системы — клетки брюшной стороны заднего отдела — предшественники моторных нейронов — ранние моторные нейроны — поздние (зрелые) моторные нейроны. При этом в культуре можно было обнаружить несколько стадий одновременно, так как клетки дифференцируются асинхронно. Ученые обнаружили, что при использовании стандартного протокола до поздних стадий доходило меньше клеток, чем при прямой дифференцировке, а также больше клеток отклонялось от намеченного пути и превращалось в другие типы.
Это отличие прямой дифференцировки от стандартной наглядно показывает нам разницу между развитием клетки в эмбрионе и в культуре. В целостной системе, такой как зародыш, на ранних этапах возникает разметка плана строения, и только после этого начинается окончательная дифференцировка. Вероятно, это необходимо для адекватного взаимодействия между тканями и разными типами клеток в эмбрионе. При прямой дифференцировке клетки проходили стадию, нехарактерную для стандартного протокола: в них включались гены переднего мозга. Впрочем, к поздним стадиям их экспрессия исчезала, и конечные стадии дифференцировки в обоих протоколах оказались очень похожими.
Технология прямой дифференцировки вызывает много вопросов и споров. Несмотря на ее эффективность, прежде чем использовать ее на практике, необходимо убедиться в том, что «нестандартные» пути развития клеток не привносят в них никаких побочных свойств.
Источник: James Alexander Briggs, Victor C. Li, Seungkyu Lee, Clifford J. Woolf, Allon Klein, Marc W. Kirschner. Mouse embryonic stem cells can differentiate via multiple paths to the same state // eLife. 2017. V. 6. P. e26945. Doi: 10.7554/eLife.26945.